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Abstract—Solution appraisal, which has been realized on the

basis of projections from the true medium to the solution, is an

essential procedure in practical studies, especially in computer

tomography. The projection operator in a linear problem or its

linear approximation in a nonlinear problem is the resolution

matrix for the solution (or model). Practical applications of a res-

olution matrix can be used to quantitatively retrieve the

resolvability of the medium, the constrainability of the solution

parameters, and the relationship between the solution and the

factors in the study system. A given row vector of the matrix for a

solution parameter can be used to quantify the resolvability,

deviation from expectation, and difference between that solution

parameter and its neighbor from the main-diagonal element, row-

vector sum, and difference between neighboring elements in the

row vector, respectively. The resolution length of a solution

parameter should be estimated from the row vector, although it

may be unreliable when the vector is unstable (e.g., due to errors).

Comparatively, the resolution lengths that are estimated from the

column vectors of the observation-constrained parameters are

reliable in this instance. Previous studies have generally employed

either the direct resolution matrix or the hybrid resolution matrix as

the model resolution matrix. The direct resolution matrix and

hybrid resolution matrix in an inversion with damping (or general

Tikhonov regularization) are Gramian (e.g., symmetric). The

hybrid resolution matrix in an inversion using zero-row-sum reg-

ularization matrices (e.g., higher-order Tikhonov regularizations) is

one-row-sum but is not a stochastic matrix. When the two resolu-

tion matrices appear in iterative nonlinear inversions, they are not a

projection of the solution, but rather the gradient of the projection

or a projection of the solution improvement immediately after a

given iteration. Regardless, their resultant resolution lengths in

iterative nonlinear inversions of surface-wave dispersion remain

similar to those from the projection of the solution. The solution is

influenced by various factors in the study, but the direct resolution

matrix is derived only from the observation matrix, whereas the

hybrid resolution matrix is derived from the observation and reg-

ularization matrices. The limitations imply that the appropriateness

using the two resolution matrices may be questionable in practical

applications. Here we propose a new complete resolution matrix to

overcome the limitations, in which all of the factors (e.g., errors) in

linear or nonlinear (inverse or non-inverse) studies can be

incorporated. Insights on all of the above are essential for ensuring

a reliable and appropriate application of the resolution matrix to

appraise the model/solution and understand the relationship

between the solution and all of the factors in the study system,

which is also important for improving the system.

Keywords: Linear projection, linear regression, regulariza-

tion, observational constraints, gramian matrix.

1. Introduction

Geophysics is the investigation of the Earth based

on the principles of physics, whereby the physical

properties of the Earth medium (i.e., the unknown

model) are inverted from either surface- or space-

based observations. Geophysical inverse problems

are often underdetermined (e.g., Menke 2015;

Tarantola and Valette 1982; Wiggins 1972) owing to

the various limitations of these observations. How-

ever, advances in generalized or regularized inverse

theory over the last century now make it possible to

solve underdetermined inverse problems (e.g., Han-

sen 1992; Lawson and Hanson 1995; Levenberg

1944; Moore 1920; Morozov 1984; Penrose 1955;

Tikhonov 1963). Although the quality and reliability

of such an under-constrained solution is essential in a

data-poor environment, the verification of a geo-

physical solution is difficult or even impossible, as

the investigated medium is generally inaccessible. As

such, geophysicists have to make great efforts in the

methodology of solution appraisal. However, under-

standing what is reliable in some geophysical

solutions remains perhaps the most exciting challenge

to date (Foulger et al. 2015).

An inverted solution (x) that represents investi-

gated medium (x) can be described as:
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x ¼ rðxÞ; ð1Þ

where the operator r, which can also be denoted by

r:x ? x, represents the relationship between x and x.

This problem can be linearized as:

x ¼ Rx; ð2Þ

where R, which can also be denoted by R:x ? x, is

the resolution matrix (Backus and Gilbert

1968, 1970), a linear projection approximation of

r:x ? x (Eq. (1)). R has been widely used in solution

appraisals in geophysics (e.g., Aki et al. 1977; An

2012; Aster et al. 2005; Menke 2015; Tarantola and

Valette 1982; Wiggins 1972; Yao et al. 1999) and

other research areas (e.g., Lütkenhöner and Grade de

Peralta Menendez 1997; Katamreddy and Yalavarthy

2012).

However, the properties of R remain poorly

understood in practical problems, and considerable

uncertainties and/or inconsistencies regarding R still

exist. For example, early studies mostly analyzed the

diagonal entries to evaluate the resolvability of the

target medium (e.g., Aki et al. 1977; Day-Lewis et al.

2005; Wiggins 1972), even though the solution is

actually related to all of the entries in R (Eq. (2)).

R has been mostly applied to estimate the resolution

length (or resolution width). This length should be

retrieved from a given row in R (e.g., An 2012;

Barmin et al. 2001; Crosson 1976), although the

result appears to be similar to that from the corre-

sponding column (e.g., Alumbaugh and Newman

2000; Miller and Routh 2007; Pilkington 2016). Why

and when are they similar? An inverse problem is

often solved using reference model, whereby the

inverted solution is not a model of the medium but

rather a perturbation (Dx) of the reference model (xi).

R can be provided in the inversions (e.g., Jackson

1972; Ren and Kalscheuer 2020), but it represents the

Dx ? Dx projection, not x ? x. What is the rela-

tionship between the matrix and r:x ? x? Can the

matrix be used to estimate the resolution length of the

solution x (= Dx ? xi)? All the above questions will

be addressed in this paper.

R is particularly useful in model appraisal, but it

comes with various limitations. For example, some of

the general factors (e.g., observational and data pro-

cessing errors) cannot be reflected by the matrix. The

resolution estimated from the matrix with limitations

may be unrealistically high (Pilkington 2016). A

matrix R:x ? x with all of the factors in a complete

process can overcome these limitations. However, no

such matrix exists to date.

In total, R is a unique quantitative indicator of the

reliability of a given solution, and it is also important

in understanding the relationships between the solu-

tion and the observations, regularization, and other

factors. However, various uncertainties and limita-

tions regarding R remain. This paper reviews

previous resolution matrices and clarifies both the

significance and properties of the matrices, which

often appear in practical inversions, to explain how to

appropriately employ such a matrix in a given study.

Furthermore, this paper clarifies the resolution

matrices in nonlinear inversions and suggests a new

resolution matrix, which can include all of the factors

in a linear/nonlinear problem. This study can there-

fore assist in the appropriate selection and

implementation of a resolution matrix and provide

the reader with a better understanding of both the

quality and reliability of the solution and the rela-

tionships between the solution and all of the factors in

the study system, which are important for further

improving the system.

2. Resolution Matrices from Observations

and Regularization Matrices

Resolution matrices that are derived from obser-

vations and regularization matrices have been widely

applied in various research studies. This section

provides a review of resolution matrices and their

significance. Furthermore, the matrix properties,

which are important in matrix applications, are first

clarified.

2.1. Variables Used

x, x: Real medium (or true model) vector, solution

(or inverted model) vector.

xi, xi: ith real-medium parameter, ith solution

parameter.

ri,j: Entry at the ith row and jth column of matrix

R.
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ri,* (or r*,j): ith row (or jth column) vector of

matrix R.

Rri,* or RiR: Sum of all of the entries in the ith

row of matrix R.

2.2. Solutions of the Inverse Problem

The goal of a geophysical investigation is to

directly retrieve the solution of the medium (xD) from

observations (d = d ? dd) that are contaminated with

errors (dd) via the inverse equation:

xD ¼ g�gd; ð3Þ

which is based on the physical relationship between

the medium parameters (m 9 1 vector x; [x1, x2,…,

xm]
T) and observational data (n 9 1 vector d; [d1,

d2,…, dn]
T), with the latter defined as:

d ¼ gðxÞ; ð4Þ

the operator g in Eq. (4) is often not invertible, such

that a generalized inverse of g, g–g, is used, as in

Eq. (3).

Equation (3) can be expressed in linear form as:

xD ¼ G�gd; ð5Þ

and rewritten as:

d ¼ Gx; ð6Þ

the n 9 m matrix G, which is normally termed the

observation matrix, is composed of the sensitivities of

d with respect to x. The generalized inverse of G, G–g

(e.g., Lawson and Hanson 1995; Moore 1920; Pen-

rose 1955; Tan 2017; Tarantola and Valette 1982),

can be either a right inverse:

G�g = GT GGT
� ��1

; n\m; ð7Þ

or a left inverse:

G�g¼ GTG
� ��1

GT; n�m : ð8Þ

G–g can also be obtained via singular value

decomposition (SVD) (Golub and Kahan 1965;

Golub and Reinsch 1970; Varah 1973) or some form

of matrix factorization (e.g., Gentle 2007; Golub

1965). The calculated G–g from those methods is

tightly related or exactly equivalent.

Figure 1a shows an example (Example 1) of a

one-dimensional (1-D) underdetermined inverse

problem that mimics the relationship between dis-

tance, slowness (x), and travel time (d). The problem

is described by 10 linear equations (Eq. (S1) in the

supporting information), with 100 (m = 100)

unknown parameters in x and 10 (n = 10) observa-

tions (d). The coefficient of the ith parameter (xi) in

the jth equation for dj is the product of the segment

length xi that is traveled by the jth observation

(Fig. 1a) and the sensitivity of dj with respect to xi.

All of the coefficients are stored in G (Fig. 1b).

Several coefficients in Eq. (S1) (or the entries in

G) for the second and ninth observations are greater

than one, which means that higher sensitivities are set

for the parameters because the segment lengths of all

the parameters are equal to one (Fig. 1a). Figure 1c

shows a synthetic x and its pseudo-inverse solution

xD. The synthetic error-free observation d (dd = {0})

and prediction of xD (dD) are shown in Fig. 1d.

Both the data coverage (observation distribution)

and sensitivities, which are stored in G, influence the

solution in the synthetic example (Fig. 1). For

example, the solution parameters from x1 to x10 are

constrained by only one observation (the first travel

path; the top left arrow in Fig. 1a), such that the

nonzero entries for all ten parameters in the first row

of G (Fig. 1b) and the coefficients in the first row of

Eq. (S1) are the same and equal to one. Similarly, the

parameters from x11 to x20 are also constrained by one

observation (the second path), but the nonzero entries

for the ten parameters in the second row of

G (Fig. 1b) and the coefficients in the second row

of Eq. (S1) are different. The resultant x1-x10 values

in xD (Fig. 1c) are the same and equal to the average

of the synthetic model parameters x1-x10 (circles in

Fig. 1c), whereas the resultant x11-x20 values are

quite different, both from each other and their

respective synthetic values (x11-x20). The differences

in x11-x20 are caused by different sensitivities

because they all have the same path segments.

Parameters x21-x40 and x41-x60 are constrained by

two paths, but their path-overlapping patterns

(Fig. 1a and b) differ. The differences in x21-x60 in

xD (Fig. 1c) are related to the path coverage.

Parameters x61-x90 are constrained by several obser-

vations. x91-x100 are not constrained by any

observations, such that they are all equal to zero in

xD.
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However, most geophysical inverse problems are

ill-posed (i.e., there are not sufficient observations to

obtain a unique and stable solution), and the gener-

alized solution xD, such as that in Example 1

(Fig. 1c), is not physically rational. Furthermore,

large discrepancies may exist between the real model

x and solution xD, especially for parameters with poor

or no observation coverage (Fig. 1a–c), even though

there is a good fit between the observation data and

model predictions (Fig. 1d). Additional artificial

constraints (often called regularization) (e.g., Aster

et al. 2005; Benning and Burger 2018; Engl et al.

2000; Levenberg 1944; Menke 1989; Tikhonov 1963)

on the model parameters must therefore be included

during the inversion to obtain a physically rational

solution. The regularization-based forward equation

then becomes:

b ¼ Ax; ð9Þ

where the nb 9 m matrix A and nb 9 1 vector b are:

A ¼ G
C

� �
and b ¼ d

c

� �
; ð10Þ

respectively, which contain an nc 9 m (nc = nb –

n) matrix C and an nc 9 1 vector c, respectively, both

of which are related to the regularization.

Tikhonov regularization (Levenberg 1944; Tikho-

nov 1963) is used largely in geophysical inversions

(e.g., Aster et al. 2005; Constable et al. 1987; Menke

1989). C is denoted by kLn in nth-order Tikhonov

regularizations, and c (Eq. (10)) is a zero vector

({0}). The factor k is the regularization parameter,

which balances the contributions of either the obser-

vations and regularization in the inversion, or the fit

to the observational data d and regularization vector

Figure 1
Inverse problem Example 1. This is a simple 1-D ray-propagation (linear) problem that is defined by either d = Gx or Eq. (S1). Arrow lines in

(a) illustrate the ray paths. The observation vector d contains the travel times for all ten rays (dj; j = 1, …, 10). The vector x includes the

slowness (reciprocal of speed) in each unit segment to be resolved (xi; i = 1, …, 100). The matrix G in (b) contains the combinations of the

distance segments travelled by the ten rays and their synthetic sensitivities. Several parameters are set to a high sensitivity in the second and

ninth observations, which simulates a study with parameters that possess different sensitivities. c Synthetic model x (circles) and solutions xD,

x(I), and x(L1) (lines) obtained via generalized inversions, with zeroth- (I) and first-order (L1) Tikhonov regularizations included in the latter

two inversions. d The synthetic observation data d (circles) from x, and the predictions dD, d(I), and d(L1) (lines) from the solutions xD,

x(I) and x(L1), respectively
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c. Tests that employ ad hoc methods (e.g., Craven

and Wahba 1978; Hansen 1992; Morozov 1984) are

often used to determine k. The matrix L0 for zeroth-

order Tikhonov regularization (damping regulariza-

tion), which minimizes the model (Levenberg 1944),

is the identity matrix I. Ln (n[ 0; e.g., L1 in Eq. (S2)

in the supporting information) is a zero-row-sum

band matrix. L1 regularization (flatness regulariza-

tion) flattens the model via minimizing the first-order

gradient of the model. Ln Tikhonov regularization

exerts uniform a priori constraints to all of the solution

parameters. Therefore, regularization (C = kLn) with

an optimal weighting factor k produces the optimal

average regularizing effect for all of the parameters.

However, if C contains a diagonal matrix

W (= diag(w1, w2,…)) (i.e., C = kWLn), then the

regularization is heterogeneous and spatially variant

for the model (e.g., An 2020; Katamreddy and

Yalavarthy 2012; Pogue et al. 1999; Sanny et al. 2018).

Regularization at least makes A a full-column

rank matrix, such that A-1 (or the left inverse A-g),

which is an m 9 nb matrix, can be uniquely obtained.

The solution (x) of an inversion using regularization

is:

x ¼ A�gb: ð11Þ

where b and d are replaced by b and d, respectively,

in Eq. (10). x can also be obtained via least-squares or

minimum-norm inversions using the objective

function:

min
G
C

� �
x� d

c

� �����

����

2

: ð12Þ

When Tikhonov regularization (C = kL, c = {0})

is used, a truncated form of A-g (m 9 n matrix A-t)

can be obtained via (e.g., Aster et al. 2005; Barmin

et al. 2001; Crosson 1976):

A�t ¼ ðGTGþ k2LTLÞ�1GT: ð13Þ

x is then given by:

x ¼ A�td; ð14Þ

which is the same as that in Eq. (11). x in Example 1

(Fig. 1a), which uses first-order Tikhonov regular-

ization, is shown in Fig. 1c. An optimal factor k of

one is selected by Morozov’s discrepancy principle

(Morozov 1984) for the inversion.

The resultant x via Eq. (11), which is obtained

using regularization, is generally more rational than

xD. For example, x (denoted as x(L1)) in Example 1

(Fig. 1c) is closer to the synthetic model than xD,

such that x is preferred over xD (Eq. (5)) in practical

inversions (i.e., the solution provided in a practical

ill-posed inversion is x rather than xD).

If the errors (dd) in the measured observation data

d (= d ? dd) are known, then the solution x in

Eq. (11) becomes:

x ¼ A�gbþ dxd; ð15Þ

where:

dxd ¼ A�g dd
0

� �
¼ A�tdd: ð16Þ

It is noted that dxd is only the contribution of the

observational errors to the solution and is therefore

not the solution error. The solution error or residual,

dx (= x - x), is related to both dd and the other

factors in the x ? x process.

2.3. Resolution Matrices from the Observations

and Regularization Matrices

The process to obtain the solution (x) of a true

medium (x) is a projection (r:x ? x) from x to x,

which can be described using Eq. (1) (Fig. 2a). If the

projection is linear, then x can be written as a linear

regression equation (Fig. 2a):

x ¼ Rxþ dxof ; ð17Þ

where R is the slope of the regression, dxof is a

constant offset. If dxof is ignored, then the linear

regression becomes the linear projection of Eq. (2)

(Fig. 2a), where R is the so-called resolution (Backus

and Gilbert 1968, 1970) or projection matrix. For a

nonlinear problem, either R or R:x ? x can be con-

sidered a linear approximation of r:x ? x (Fig. 2a).

However, this matrix has been obtained via matrix

operations, with several different resolution matrices

potentially being obtained (An 2012). If the obser-

vational errors (dd) in data d in Eq. (10) are ignored,

then d = d. Replacing d in Eq. (5) with d in Eq. (6)

causes the projection from x to xD (x ? xD) to

become:

Vol. 180, (2023) On Resolution Matrices 115



xD ¼ RDx; ð18Þ

where the resolution matrix RD (Table 1) is of the

following form (e.g., Jackson 1972; Menke 1989;

Wiggins 1972):

RD ¼ G�gG: ð19Þ

The transformation from x to x (x ? x) is

obtained by inserting Eq. (9) into Eq. (11):

x ¼ RIx; ð20Þ

where resolution matrix RI (Table 1) is of the form

(An 2012):

RI ¼ A�gA: ð21Þ

When the vector c is a zero vector (e.g., in

Tikhonov regularization) and d in Eq. (11) is replaced

by that in Eq. (6), the transformation from x to x

(x ? x) is:

x ¼ RHx; ð22Þ

where the resolution matrix (RH) (Table 1) takes the

form:

RH ¼ A�gB; B ¼ G
0

� �
; ð23Þ

if the truncated form A–t is used, then Eq. (23)

becomes (An 2012):

RH ¼ A�tG; ð24Þ

if A-t is not truncated from A-g and instead calcu-

lated from Eq. (13), which employs Tikhonov

regularization of the form kL, then RH becomes (e.g.,

Aster et al. 2005; Barmin et al. 2001; Boschi 2003;

Crosson 1976):

RH ¼ ðGTGþ k2LTLÞ�1GTG: ð25Þ

The three resolution matrices for Example 1, RD

and RH in the inversion using the regularization

matrix I (RH(I)) and RH in the inversion using the

regularization matrix L1 (RH(L
1)), are shown in

Fig. 3a–c.

If G is a full-column rank matrix and no

regularization is used, then xD equals x, and RD, RI,

and RH are the same as the identity matrix. Other-

wise, xD and x are different, and the three resolution

Figure 2
Illustration of resolution matrices a in a general study and b in a study with offset error. The model x (= [x1]) in the illustration constains one

parameter (x1). A nonlinear relation r:x ? x between solution (x) and true model (x) is approximated by linear projection (x = Rx, Eq. (2))

and linear regression (x = Rx ? dxof, Eq. (17)). R is the slope of the linear relations
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matrices differ. Regularization needs to ensure that

A is a full-column rank matrix, such that RI is still an

identity matrix. The practical solution is x, as

opposed to xD, due to regularization, and the

resolution matrix for the x ? x projection is RH, as

opposed to RD. RD has been paid little attention in

previous regularized inversions in this case. How-

ever, RD is still very important for understanding the

reliability of the solution in the inversions, as

explained in the ‘‘Resolvability and constrainability

from the resolution matrix’’ section.

Even though RD and RH are often different, they

are both commonly called the model resolution

matrix, which may confuse readers. The notations

suggested by An (2012) for the matrices are adopted

here for clarity, where RD is the direct resolution

matrix, RI is the regularized resolution matrix, and

RH is the hybrid resolution matrix.

2.4. Properties of the Resolution Matrices

2.4.1 RD from only the Observation Matrix

Truncated SVD of G allows RD to be written in the

form (e.g., Aster et al. 2005; Jackson 1972; Wiggins

1972):

RD ¼ VqV
T
q ; ð26Þ

where Vq (= {vi,j}m9q, q = rank(G)) is an unitary

matrix with right singular vectors of G. Equation (26)

indicates that RD is a Gram matrix (or Gramian),

which can be created by multiplying a matrix with its

own transpose, as in Eq. (26).

The Gram matrix (e.g., Gentle 2007), RD (e.g.,

Fig. 3a), is symmetric (Table 2), with its rank

(rank(RD)) equal to both its trace (trace(RD)) and

the rank of Vq (rank(Vq) = q) (Eq. (26)). Here

rank(RD) equals q because rank(Vq) is equal to

rank(G(q)). The diagonal elements in RD are non-

negative, but the off-diagonal elements in RD can be

negative, with the exception that either Vq
T is a full-

column rank matrix or Vq is a full-row rank matrix.

However, Vq for an underdetermined problem is not a

full-row rank matrix because q is smaller than m,

such that the off-diagonal entries of RD of an

underdetermined problem can be negative.
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A negative ri,j entry appears in RD (Table 2) when

some columns in two rows of G are like in a band

matrix with the entries (0 and nonzero numbers a to

d) below:

::: a ::: b ::: 0 :::
::: 0 ::: c ::: d :::

� �
: ð27Þ

Figure 3
The direct resolution matrix a RD, and hybrid resolution matrices b RH(I) and c RH(L

1) for the inverse problem in Fig. 1a. A regularization

parameter (k) of one is used in the inversions. RH(I) and RH(L
1) are for the inversions that employ I and L1 regularization matrices,

respectively. d, e The 48th row and 48th column vectors of the matrices. The x48 parameter is constrained by the fifth observation, which

overlaps with the sixth observation (Fig. 1a); the parameters from x40 to x60 are influenced by these two observations. The entries in row r48,*
of RD (d) are zeros, with the exceptions of r48,41–r48,55 (positive), and r48,56–r48,60 (negative)
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entries in G–g related with the nonzero entries a and

d in G have different signs from those in G, causing

the negative ri,j. This happens in G when xi and xj are

constrained by different observations, which also

constrain another parameter in common. For exam-

ple, x48 and x58 are respectively constrained by the

fifth and sixth observations (Fig. 1a), but the two

observations also constrain the solution parameters

x52–x55 in common. Consequently, r48,58 in RD is

negative (Fig. 3a).

2.4.2 RH with Uniform Regularization Using kI

When uniform zeroth-order Tikhonov regularization

(kL0 or kI) is used, SVD of G allows the general

inverse A–t (Eq. (13)) to be written as below (e.g.,

Menke 2012):

A�t ¼ VðSSþk2IÞ�1SUT; ð28Þ

where U is a unitary matrix with left singular vectors

of G, S is a nonnegative diagonal matrix with singular

values of G (si). The resolution matrix RH(kI)
(Eq. (25)) can be written as:

RHðkIÞ ¼ VðSSþk2IÞ�1SUTUSVT ;

¼ VðSSþk2IÞ�1SSVT

¼ VFVT ¼ VqFqV
T
q

ð29Þ

where Fq (= diag(f1, f2, …, fq)) (Aster et al. 2005) is

truncated F and with the positive constants (fi):

fi ¼
s2i

s2i þ k2
; ð30Þ

The positive diagonal matrix Fq can be written as

a product of Eq (= diag(f1
1/2, f2

1/2, …, fq
1/2)) and Eq

T.

Equation (29) can then be written as:

RHðkIÞ ¼ VqEqE
T
qV

T
q ¼ ðVqEqÞðVqEqÞT; ð31Þ

where:

VqE ¼ fvi;jf
1=2
j g: ð32Þ

Equation (31) indicates that RH(kI) is a Gram

matrix (Table 2), like RD. However, when a spatial

variant regularization of the form kWI is used, the

matrix RH(kWI) cannot be written in the form of

matrix multiplication with its own transpose, and is

therefore not Gramian.

RH(kI) (e.g., Fig. 3b) is symmetric, like RD.

RH(kI) has a rank that is equal to rank(VqEq)

(Eq. (31)). The diagonal entries of RH(kI) are non-

negative, but the other entries can be negative.

Equation (30) indicates that fj
1/2 is in the range

(0,1). Equation (32) indicates that a given column

(e.g., the jth column) of VqEq equals the same column

vector of Vq multiplied by fj
1/2. All of the entries in

VqEq will be closer to zero than Vq, as fj
1/2 is a

positive value that is less than one. All of the entries

in RH(kI) therefore have weaker intensities than those

in RD, but they possess similar intensity patterns, as

observed in comparisons of Fig. 3a and b, and Fig. 3d

and e. Furthermore, trace(RH(kI)) is smaller than

trace(RD), such that the resolvability of x decreases

after regularization using kI, as explained in the

‘‘Resolvability and constrainability from the resolu-

tion matrix’’ section.

2.4.3 RH Using a Zero-Row-Sum Regularization

Matrix

The matrices of derivative regularizations, e.g., the

high-order Tikhonov regularization matrices kLn and

kWLn (n[ 0), are a zero-row-sum ns 9 m matrix

(S0) (ns[ 0), such that

Table 2

Properties of typical resolution matrices

Matrix Inverse problem Properties

RD Linear or linearized nonlinear Gramian (e.g., symmetric, with nonnegative main-diagonal

elements (but not the off-diagonal elements))RH(kI) Linear

RJH
i(kI) Linearized nonlinear

RH(kL
n) Linear One-row-sum matrix; off-diagonal elements can be negative

(unlike stochastic matrix)RJH
i(kLn) Linearized nonlinear
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S01 ¼ 0; ð33Þ

where 1 (= {1}m91) is a vector with all elements one

and 0 is a zero vector. Regardless of the number (ns)

of rows of S0, a relation below:

ðGTGþ k2ðS0ÞTS0Þ1 ¼ GTG1 þ k2ðS0ÞTðS01Þ
¼ GTG1 þ k2ðS0ÞT0

¼ GTG1

;

ð34Þ

exists. If the regularization matrix (C, Eq. (10)) is a

zero-row-sum matrix (S0), the Eq. (34) allows a

relation on the resolution matrix RH (Eqs. (24) and

(25)):

RH1 ¼ A�tG1

¼ ðGTGþ k2ðS0ÞTS0Þ�1GTG1

¼ ðGTGþ k2ðS0ÞTS0Þ�1ðGTGþ k2ðS0ÞTS0Þ1
¼ 1

;

ð35Þ

therefore, when regularization matrix is a zero-row-

sum matrix (S0), the resolution matrix RH is a one-

row-sum matrix S1 (while S11 = 1). This can be

simplified as:

G
S0

� ��g
G
0

� �
¼ G

S0

� ��t

G ¼ S1; ð36Þ

where 0 is a zero matrix.

As the high-order Tikhonov regularization matri-

ces kLn and kWLn (n[ 0) (e.g., flatness and

smoothness) are both a zero-row-sum S0 matrix.

Therefore, RH(kL
n) and RH(kWLn) are S1 matrices

(i.e., all of the rows in RH(kL
n) and RH(kWLn) sum to

one; Table 2). All of the rows in RH(L
1) in Fig. 3c

sum to one, as shown in Fig. 4a.

The resolution matrix RH(S
0) is similar to a

stochastic matrix (a square matrix with non-negative

elements and each row summing to 1), but the entries

in RH (or S1) can be negative due to the same reason

above for RD. S
0 matrix (is often band matrix) or the

combined matrix of S0 with G (Eq. (36) or A in

Eq. (10)) often includes two rows like Eq. (27), i.e.,

the S1 regularization matrix always yields two

parameters (e.g., x1 and x11) that are constrained by

the same observation (the first row of G), with one of

them (x11) also being constrained by one of the other

observation or regularization row (the tenth row of L1

in Eq. (S2)). The two rows also constrain a third

parameter (x10). The entries in A-t and A-g related

with parameters often have different signs from G,

and the r1,11 entry in RH(L
1) (Fig. 3c) is consequently

negative. Therefore, the application of Ln regulariza-

tion can cause more negative entries in RH(L
n) (e.g.,

Fig. 3c) than RD (Fig. 3a), and then RH is not a

stochastic matrix.

A one-row-sum matrix RH(S
1) implies that one is

an eigenvalue of the projection RH, such that there

exists an equation:

RHxp ¼ 1xp; ð37Þ

Eqs. (22) and (37) indicate that a medium (xp) can be

fully resolved and equal to a solution (xp = RHxp),

even though xp is not the medium that is currently

measured. It is impossible for all of the row sums in

RH(kI) to equal one, thereby demonstrating that

Figure 4
a Row-vector sums and b main-diagonal elements of the resolution matrices RD and RH in Fig. 3
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higher-order Tikhonov regularization is superior to

damping (or kI) regularization from the viewpoint of

row sums.

2.4.4 RH Using Mixed Regularization

If the regularization is mixed using higher-order

regularizations (e.g., L2 and L3), then the new

regularization matrix is still a matrix S0, and RH is

a matrix S1. Otherwise, if it is mixed using damping

and a higher-order Ln (n[ 0) (e.g., Sigloch 2011;

Tewarson 1977), then the mixed regularization

matrix C is neither a diagonal matrix nor a zero-

row-sum matrix. Therefore, the new RH is neither a

symmetric (Gram) matrix nor a one-row-sum matrix.

2.5. Significances of the Resolution Matrices

2.5.1 Row Vector = Content Function of the Medium

Equation (2) highlights that a solution parameter xi

can be expressed as a weighted sum of all of the

model parameters in x (or [x1, x2, …xm]
T):

xi ¼
Xm

j¼1

ri;jxj; ð38Þ

where the ri,j entry of matrix R plays a role in

weighting the jth model parameter xj in the summa-

tion. The ri,* row vector of R therefore acts like an

averaging vector (Backus and Gilbert 1968), with the

entries in ri,* representing the accurate contents (or

contributions) of all of the medium parameters to (or

in) the ith solution parameter xi. Therefore, ri,* can

also be termed the content (or contribution) function

of the medium in xi (Table 3).

2.5.2 Column Vector = Spreading Function

of the Medium

The ri,j entry signifies the contribution of the medium

parameter xj to xi, such that all of the entries in the jth

column vector (r*,j) (Table 3) correspond to the

contributions of the jth model parameter (xj) to either

all of the parameters in x or the spread of xj into the

parameters. This has been considered the Green’s

function (also termed the point spread function

(Smith 1997), or impulse response function) of xj to

x.

2.5.3 Significances of the Matrices

The matrices RD, RI, and RH are slopes of the linear

projection from x to x, but have different signifi-

cances (Table 1) on the transformation.

Regularization at least makes matrix A full rank

(invertible); i.e., RI should be an identity matrix. If

the x ? x projection matrix RI is an identity matrix,

then a unique solution (x) can be obtained from a

given G and C. Otherwise, some of the model

parameters remain poorly constrained, and further

regularization should be employed.

RD is only produced from G (Eq. (19)). Therefore,

RD represents the effects and contributions of x from

the given observations, regardless of whether regu-

larization is used or not.

RH only reflects the x ? x projection, with no

consideration of other factors (e.g., errors) in the

Table 3

Vectors of resolution matrix

Significance Reliable resolution length More

sensitive
Vector Element

Row,

ri,*

Content or contribution function ri,i xi resolvability Stable row vectors Observation

Rri,* [ 1: overestimated xi

\ 1: underestimated xi

|ri,i – ri,ii| *|xi – xii|

Column,

r*,j

Spreading function Observation-constrained Parameters Regularization
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matrix. RH can therefore evaluate the reliability of

x. Furthermore, the construction of RH as a mixture of

the observations (G) and regularization (kC in

A) (Eq. (23)) means that it reflects some combination

of the observational and regularization effects in the

solution. The variations or differences between RH

and RD therefore represent the effects of regulariza-

tion on the inversion, as RD only reflects the

observational effects on the solution.

All three matrices, especially RH and RD, are

therefore essential for understanding the inversion

and its result, such as the resolvability of x, the

uniqueness and reliability of x, and the effects of

regularization.

2.5.4 Column Vector Variations Due

to Regularization Changes

The role of regularization on the projection from x to

x can be revealed via a comparison of the resolution

matrices RD and RH. One entry (ri,j) of either RD in

Eq. (19) or RH in Eq. (24) can be written as:

ri;j ¼
X

k

ui;kgk;j; ð39Þ

where ui,j represents an entry of either G-g or A-t,

and gk,j is an entry of G. RH (Eq. (24)) can be con-

sidered RD (Eq. (19)), with the variation in ui,j

obtained by replacing G-g with A-t. Equation (39)

indicates that if the g*,j column vector of G is given,

then the variation of ui,j only influences the jth column

vector (r*,j) of R. Therefore, the addition of regular-

ization (C) in A (Eq. (10)) allows the jth column

vector in RH to be considered a function of the jth

column (with no relationship arising among the other

columns) in RD. Regularization essentially changes

the spread functions from RD to RH, such that the

spread function is sensitive to regularization

(Table 3).

These column vector variations due to regular-

ization changes are well-illustrated by comparing RD

and RH(L
1) (Fig. 5c and d, respectively) of a linear

inverse problem example (Example 2) with three-

point observations (G in Fig. 5a) and 50 unknowns in

x (Fig. 5a and b). The L1 regularization matrix and

k = 1 are used in the inversion. If a column in RD

(e.g., r*,5) is all zeros (Fig. 5c), then the

corresponding column vector in RH (r*,5) (Fig. 5d)

will be all zeros. Otherwise, the tenth column in RD

has one nonzero entry (r10,10), and the tenth column

vector in RH(L
1) (r*,10) (Fig. 5c and d) has nonzero

entries around the r10,10 entry. The variations between

the column in RD and that in RH are due to

regularization. Similar results can be found via a

comparison of RH(L
1) and RD (Fig. 3) for Example 1

(Fig. 1).

Comparisons of the column vectors of RD and RH

for the same parameter xj can reveal the regulariza-

tion effect, as the variations in the spread functions

from RD to RH are due to regularization. Here, the jth

column vector in RH is only related to the jth column

in RD, such that the relationship between the relative

magnitudes of neighboring entries in a row vector of

RD may be preserved in RH. A given row vector in RH

may exhibit a similar pattern or curve to that in RD.

For example, the curves of the r48,* row vectors in RD

and RH (Fig. 3d) are similar, but those of the r*,48
column vectors (Fig. 3e) are very different.

2.6. Do the Projection Matrices Represent Practical

Projections?

The projection r:x ? x (Eq. (1)) includes the

effects of all of the factors (e.g., uncertainty in

observation d and prior information c (Menke 2015),

Eq. (12)) in the process from x to x, but RD, RI, and

RH do not. The resolution estimated from RH can be

unrealistically higher than that obtained via synthetic

tests (Pilkington 2016), which may be due to the

limitation of the projection matrix.

2.6.1 RH Versus Observational Errors

The observational errors dd influence the solution x.

When dd is considered, Eq. (2) becomes:

x ¼ RðddÞx; ð40Þ

where R(dd) represents R as a function of dd, with
R(dd = 0) equaling R for the error-free case.

Inserting Eq. (6) into Eq. (15) then yields a

projection that is similar to the form in Eq. (17):

x ¼ RHxþ dxd; ð41Þ
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Eq. (41) shows that RH is independent of dxd, which
represents the effect of dd in the solution. However,

the error ranges can be used to weight the data in an

inversion that employs a weighted least squares

(WSL) approach; RH determined via WSL inversion

is slightly different to the above RH, but it is also not

R(dd). Therefore, RH does not include the effect of

observational errors.

2.6.2 Resolution Matrix of the Full Process

from x to x?

Is there a matrix that reflects all of the factors in the

x ? x process? If x is the result of a process that

incorporates all of the factors, then the resolution

matrix R that is directly inverted from x and x via

Eq. (2) reflects all of the factors. However, the

inversion scheme to determine such a matrix is often

impossible in geophysics. The true model for a region

(x) may be never known; otherwise, the matrix R for

a region with known x is redundant and unnecessary.

Figure 5
Resolution matrices for linear inverse problem Example 2. a The observation matrix G. The observations consist of only three points at

parameters x10, x30, and x32. Only one entry in each row in G is nonzero. b A synthetic model and its corresponding solution, which was

constrained using first-order Tikhonov regularization and k = 1. c, d Resolution matrices RD and RH. RD has only three nonzero entries. RH

has more nonzero entries, but they are in the same columns (10, 30, and 32) as those in RD
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Equation (2) represents a transformation from the

real model x to the corresponding solution x, or a

process via the projection r:x ? x (or R). This

approach is independent of x and can be isolated from

the practical true model x and practical solution x. If

x is not the true medium but rather a synthetic model,

then the inversion of R is possible.

Recovery tests, e.g., checkerboard tests (Lévěque

et al. 1993), that employ a synthetic model with a

specific structure are frequently used to retrieve a

qualitative resolution. The output solution x of a

synthetic test that employs an input model with a

random structure x also contains resolution informa-

tion (An 2012). An (2012) suggested that the

statistical resolution matrix RS (Table 1) can be

determined by statistically comparing a limited

number of input synthetic random models x and their

correspondent output solutions x via a Gaussian

function approximation for each row vector.

The output solution x includes all of the known

factors in the x ? x process, with RS including all of

these factors. However, the matrix is only approxi-

mate and not necessarily accurate. If a large number

of x and x are given, then an accurate and complete

resolution matrix can be obtained on the basis of

Eq. (2), as discussed in the following section.

3. Resolution Matrices of the Complete Process

An accurate resolution matrix that includes all of

the factors in the complete x ? x projection process

is suggested in this section.

3.1. Method

Equation (2) has to be reorganized for the

inversion of R because R is an m 9 m matrix, and

both x and x are m 9 1 vectors. The extended form of

Eq. (2) is:

x1 ¼ r1;1x1þ r1;2x2þ � � �þ r1;mxm

x2 ¼ r2;1x1þ r2;2x2þ � � �þ r2;mxm

..

.

xm ¼ rm;1x1þ rm;2x2þ � � �þ rm;mxm

8
>>><

>>>:

; ð42Þ

where ri,j is the element at the ith row and jth column

of R. The equation is reorganized as:

The compact form of Eq. (43) is:

x ¼ Xr; ð44Þ

where X is a band matrix that is composed of xT

vectors and r is a vectorization of RT:

X¼

xT 0

xT

. .
.

0 xT

2

664

3

775

m�m2

ð45Þ

and:

x1 ¼ x1r1;1þ x2r1;2þ � � �þ xmr1;m
x2 ¼ x1r2;1þ � � �þ xmr2;m

..

. . .
.

xm ¼ x1rm;1þ � � �þ xmrm;m

8
>>><

>>>:

: ð43Þ

r ¼ vecðRTÞ ¼ ½ r1;1 r1;2 � � � r1;m r2;1 � � � r2;m � � � rm;1 � � � rm;m �T: ð46Þ
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Unlike Eq. (2), x in Eq. (44) is a dependent

variable of r. If we have a real model (X) and its

corresponding solution (x), then the resolution vector

r can be inverted via Eq. (44), as r is a vector with m2

unknowns that is constructed from m equations and

x has m elements.

Application of the projection to a random syn-

thetic model xk outputs the corresponding solution xk.

The model Xk (a band matrix for xk, Eq. (45)) and xk

still satisfy Eq. (44). One can therefore obtain N

solutions (x1, x2, …, xN) by performing the same

projection for N different random synthetic models

(X1, X2,…, XN), and then all of the solutions can be

used to construct a new equation from N equations,

following Eq. (44):

fxg ¼ fXgr; ð47Þ

where:

fxg ¼

x1

x2

..

.

xN

2

6664

3

7775
and fXg ¼

X1

X2

..

.

XN

2

664

3

775 ; ð48Þ

the extended form of Eq. (47) is shown in Eq. (S4) in

the supporting information. One synthetic model (Xk)

produces m equations, as outlined in Eq. (43), with

Eq. (47) including N 9 m equations for N synthetic

models. If Eq. (47) is constructed of m2 independent

equations, then r will be uniquely resolvable via:

r ¼ fXg�1fxg; ð49Þ

a resolution matrix R is then obtained by converting

the vector r back into a matrix.

The new matrix R is obtained via either Eq. (49)

or (2) without any approximation. The synthetic

solutions (xk) are the result of the complete

x ? x process with all of the factors. Therefore,

the resultant R reflects all of the factors (various

errors, simplification, etc.) in the complete process,

and is termed the complete resolution matrix, which

is denoted RC (Table 1).

This extraction of RC from random synthetic input

models and output solutions is similar to that

proposed by An (2012). An (2012) focused on the

extraction of a reliable resolution length from a small

number of xi and xi to construct the approximate

resolution matrix RS (Table 1). Here, an accurate

resolution matrix (RC) is directly inverted without

approximation. Various procedures, such as linear

and nonlinear inverse problems—and also non-

inverse problems (An 2012)—can be implemented

to obtain RC (Fig. 6) and RS, as they are isolated from

the x ? x process. For example, RS can be obtained

for kriging and minimum curvature gridding (Chiao

et al. 2014). The extraction of RC by Eq. (47) is a

linear regression of the relationship between xk and xk

(Fig. 2a), such that RC can then be considered a linear

approximation of r:x ? x for either the nonlinear

inverse or non-inverse problem.

3.2. Equation Simplification

The ability to resolve RC via Eq. (49) requires the

inversion of a large matrix with C m2 rows and m2

columns. However, the calculation can be simplified.

Equations (42) and (43) state that the ith solution

parameter xi
k of the solution xk can be written as:

xk
i ¼ Rix

k ¼ ðxkÞTRT
i ; ð50Þ

where Ri is the ith row of R (ri,*). All of the equations

for the parameters from xi
1 to xi

N form:

fxig ¼ fxTgRT
i ; ð51Þ

where:

fxig ¼

x1i
x2i
..
.

xN
i

2

6664

3

7775
and fxTg ¼

ðx1ÞT
ðx2ÞT

..

.

ðxNÞT

2

6664

3

7775
: ð52Þ

Equation (51) is actually the same as Eq. (S4), but

it only contains the rows for the solution parameter xi.

Equation (51) can then be used to invert the ith row of

RC (Ri) from:

RT
i ¼ fxTg�1fxig; ð53Þ

the other rows of RC can also be inverted using

Eq. (53).

The inversion of RC via Eq. (53) is easier than that

via Eq. (49). Equation (49) has an (left) inverse of the

matrix {X} with N 9 m rows and m2 columns.

However, Eq. (53) has an (left) inverse of the much

smaller (N 9 m) matrix {xT}. Furthermore, the
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inverse of {xT} for Ri
T in Eq. (53) is the same for the

calculation of the other rows (e.g., Rj
T), and is then

directly used in the calculation for all of the rows of

RC.

We derived RC for Example 1 (Fig. 1) using the

same regularization to obtain RH(L
1) (Fig. 3c) with-

out considering observation errors (dd) for

comparison. The solutions (e.g., xk) for 100

(N = 100) different synthetic random models (e.g.,

xk) were resolved in step 1 (Fig. 6) of the calculation.

The resultant RC (Fig. 7b) is the same as RH (Fig. 3c)

for the linear inverse problem. However, RC can

reflect all of the factors in a practical study, whereas

RH only reflects the effects of G and regularization.

3.3. Resolution Matrices with Error Effects

All of the measurements and processing include

errors which influence the solution x and then the

x ? x projection. RC can include the effects of

various (quantifiable and unquantifiable) errors and

additional prior information (such as C and c in

Eq. (10)). For example, system simplification may

cause error in solution but is often difficult to be

quantified. If xk is obtained through the simplifica-

tion, the resulted RC will reflect the error related with

the simplification. However, for the sake of compar-

ison, examples on the effects of quantified errors in

data are given below.

When the observational errors dd are considered,

the equation with R(dd) (Eq. (40)) is of the same form

as Eq. (2). Therefore, the above method (Fig. 6) for

obtaining the complete resolution matrix RC via

either Eq. (49) or (53) on the basis of Eq. (2) can be

used to obtain R(dd) (Eq. (40)). One pair of models

(xk, xk) serves as an independent measurement for

R in this method. However, the addition of more

factors in the processing than those contained in

G and C make the relationship between x and x more

complex, such that a larger number ([m) of model

pairs is often necessary to obtain a reliable RC.

The traditional resolution matrix RH (Eq. (41))

cannot include the effect of observation error, then

equals R(0) or R(dd = 0). The resolution matrix (RC

or R(dd)) with the effect of observation error is

different from RH. An equation with their difference

can be obtained from Eqs. (40) and (41):

dx ¼ ðRðddÞ � RHÞx; ð54Þ

Eq. (54) indicates the difference (R(dd) – RH) or

(R(dd) – R(0)) is a projection matrix on the solution

error (dx).

Figure 6
Flowchart for obtaining the complete resolution matrix (RC) from synthetic random models and solutions. r is the vector form of RC
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Random errors exist in practical studies. The

influence of random errors on the solution diminishes

as the number of observations increases. However, if

observations are limited, then the average effect of

the random errors appears as a regular systematic

error; we therefore only test systematic errors here. A

stronger regularization (larger k) is normally required

for inversions with observational errors. However, we

used the same k that was applied in the above error-

free inversion for comparison.

Two main types of systematic errors, offset and

scale factor errors, are tested here. Offset observa-

tional errors in a linear inversion will introduce offset

errors in x (Fig. 2b). The x ? x process with offset

errors in x can be better represented by Eq. (17) than

Eq. (40). Equation (17) has more variables (R and

dxof) than Eq. (40), such that the process with offset

errors is more complex and requires a larger number

of model pairs to obtain R(dd). If we still invert for

R(dd) via Eq. (40) using the same number (N = 100)

of model pairs (xk, xk) in Fig. 7, then the resultant

Figure 7
Resolution matrix RC for the 1-D inverse problem in Fig. 1. a Example synthetic (true) random model (input model) and its corresponding

solution (output model) for the inverse problem. b Matrix RC or R-of. The resolution matrix RC is calculated from 100 pairs of random input

and output models, as in (a). Flatness regularization, with k = 1.0 used. R-of is the resolution matrix after the offset errors are isolated

(Eq. (55)). c, d Two row vectors and e, f two column vectors of RC in (a). Red lines in (c–f) are Gaussian approximations of the vectors around

the diagonal entry. The row and column vectors for the 48th parameter can be represented by Gaussian function curves (c and e, respectively),

whereas those for the 95th parameter are far from Gaussian curves (d and f, respectively). The column vector (r*,95) (f) is all zeros. The widths

of the Gaussian approximation curves (c–e) can represent the widths of the vector curves
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matrix is somewhat unstable (Fig. 8a). The column

vector is somewhat stable (Fig. 8b) due to regular-

ization (L1) because flatness regularization directly

influences the column vectors, but not the row

vectors. R(dd) generally becomes stable when a

larger number (e.g., N = 200) of model pairs

(Fig. 8a) is used.

Scale factor observational errors in a linear

inversion will introduce scale factor errors in x. The

x ? x process with scale factor errors in x can be

well represented by Eq. (40), with R(dd) equaling RH

multiplied by the factors related to the scale factor

errors.

An offset error of 2.0 s (dd1 = 2.0 s) and a scale

factor error of 20% (dd1 = 0.2d1 = * 2.5 s) in the

first observation data (d1), which have a mean

of * 12.5 s for all of the synthetic observations,

are considered. Two hundred (N = 200) model pairs

are used, with the resultant matrices R(dd) shown in

Figure S1. The matrix differences, R(dd) - RH(L
1),

which reflect the observational error effects in the

projection from x to x, are shown in Fig. 9c and d.

These two types of observational errors yielded

similar errors (dxd) in the solution parameters (x1–

x25) in x(L1) (Fig. 9a, b), resulting in similar

summation curves for the 1st–25th content vectors in

R(dd) (Fig. 9e, f). However, the errors produced

different effects in the projection matrices R(dd). The
row vector of R(dd) for a solution parameter with

errors (e.g., x5) in Fig. 9c is very different from that

in Fig. 9d. The addition of the scale factor error dd1
(= 0.2d1) only caused resolution matrix changes in

the 1st–10th columns (Fig. 9d) (i.e., only the

contributions of x1–x10, which are constrained by

d1, are influenced, as expected). However, the offset

error dd1 (= 2.0) caused changes in all of the columns

(Fig. 9c). Therefore, the spread functions are sensi-

tive to different types of errors.

3.4. Offset Error Isolation

The x ? x process with offset errors in x (dx)
(Fig. 2b) can be better represented via linear regres-

sion (Eq. (17)), whereby the offset errors are isolated

from either x or R(dd)x. When the offset errors dxof
(= [o1, o2, …, om]

T) are isolated, the obtained

resolution matrix is denoted as either R-of or R-of(dd).
Equation (17) can be written as:

x ¼ R�ofðddÞxþ dxof ¼ Rþ1xþ1; ð55Þ

where R?1 = [R-of dxof], x?1 = [xT 1]T. The extended

form of Eq. (55) is:

x1
x2
..
.

xm

2

6664

3

7775
¼

r1;1 r1;2 � � � r1;m o1

r2;1 r2;2 r2;m o2

..

. . .
. ..

.

rm;1 rm;2 � � � rm;m om

2

6664

3

7775

x1
x2
..
.

xm

1

2

666664

3

777775
:

ð56Þ

Equation (55) is of the same form as Eq. (17),

such that the m 9 (m ? 1) matrix R?1 can be

inverted using model pairs (e.g., xk and xk) via the

above procedure for RC (Fig. 6). The obtained R?1 is

denoted as RC?1 (Table 1). As expected, the resultant

matrix R-of(dd) for the above case with offset errors is

Figure 8
a Row and b column vectors of the resolution matrices for a process that incorporates the offset observational errors calculated via Eq. (40)

using 100 (N = 100) and 200 (N = 200) model pairs. The row vector of the matrix obtained from 100 model pairs is unstable in the row vector

(a). The column vector (b) is less influenced by the errors because the L1 regularization used here mainly affects the column vectors via a

smoothing process, whereas the row vectors are minimally affected
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the same as R(dd = 0) (Fig. 7b), and the resultant

dxof (not shown here) equals the offset errors in x.

3.5. Properties of the Complete Resolution Matrix

Unlike RD (from G only) and RH (from G and C),

a complete resolution matrix can be obtained from

any combination of all of the factors in a study

(Table 1). If the synthetic solution xk is obtained from

a generalized inversion using error-free observations,

then RC is equal to RD, with both matrices charac-

terizing the same properties. If regularization is used

during the processing, then RC is equal to RH, with

both matrices characterizing the same properties.

Therefore, the properties of RC vary based on the

considered factors in the x ? x process.

Figure 9
Complete resolution matrices for processes considering (left) a 2.0 offset error and (right) 20% scale factor error in the first observation data

(d1) for the inverse problem in Fig. 1a. a, b Example synthetic model and corresponding solution. c, d Resolution matrix difference

E (= R(dd) – R(0)). e, f Row sums of R(dd). R(dd) is the projection matrix estimated by Eq. (40), which incorporates the observational errors

in d1. R(0) is the same as in Fig. 7b. PE = parameters constrained by erroneous observation d1
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3.6. Utilities of Resolution Matrices

Resolution matrices (e.g., RC) are a quantitative

indicator not only for solution but also for other

factors in a study system. All the factors (e.g.,

solution, observation, and regularization) can be

appraised by the matrices.

Resolution matrix has been widely used to

appraise solution reliability in an inverse problem

(e.g., Aki et al. 1977; Aster et al. 2005; Backus and

Gilbert 1970; Menke 2012; Tarantola and Valette

1982; Wiggins 1972). The diagonal entry ri,i reflects

whether xi can be resolved or how much of xi is

contained in xi and then has received considerable

attention for several decades (e.g., Aki et al. 1977;

Day-Lewis et al. 2005; Wiggins 1972). Resolution

spread estimated from resolution matrix can quantify

the degree of departure of R from an identity matrix,

and then the goodness of the model (Backus and

Gilbert 1970; Menke 2012, 2015). However, resolu-

tion length, discussed in the ‘‘Resolution length’’

section, is widely used in practical model appraisals

at present. Furthermore, the matrices RS and RC can

also be applied to evaluate solution stability. In an

unstable inversion, a small variation in observation

causes a large change in solution, then RS and RC

calculated from unstable solutions from random

models are sensitive to the instability.

The resolvability and constrainability of x under

given observation, which is the most important

information in a study, controls the solution reliabil-

ity and must be taken into account to select

parameterization and regularization. They can be

quantitatively retrieved from resolution matrices,

which is explained in the ‘‘Resolvability and con-

strainability from the resolution matrix’’ section.

The influences of regularization and errors on

solution can also be evaluated by resolution matrices.

The matrix RD reflects model projection under given

observation. RH reflects the projection with the

combination of observation and regularization. The

difference, RH – RD, reflects the regularization

influence on solution, which is discussed above in

the ‘‘Significances of the resolution matrices’’ sec-

tion. If an error exists in the process to obtain x, RC

will include the effect of the error. The difference, RC

– RD, reflects the error’s effect, which is discussed in

the Sects. 3.3 and 3.4.

4. Resolution Length

The smallest possible feature that can be detected

is an important constraint in the model. The feature

size is generally called the (spatial) resolution or

resolution length (or width). Following the suggestion

of Lebedev and Nolet (2003), the resolution length is

defined here as the half size of the feature. This

section focuses on how to obtain the resolution length

from a resolution matrix.

4.1. Content Extent Versus Resolution Length

Equation (38) indicates that one solution param-

eter generally comes from the weighted averages of

all of the medium parameters, with the entries from a

row vector of R being the weights or contents. The

smallest resolvable feature represented by xi or the

resolution length at xi should therefore be estimated

from the row vector.

The medium parameters with high contents/

weights in xi mainly determine xi, such that the

feature represented by xi is related to the high-content

segment (e.g., r48,41 to r48,55 in Fig. 7c) in the row-

vector curve. However, as the feature is represented

by xi, the resolution length is not defined by the high-

value segment extent, but rather the distances from xi

to the parameters at the segment borders. In Fig. 7c,

the resolution length for x48 is not the half distance

from x41 (r48,41) to x55 (r48,55), but it is instead related

to the distances from x48 (r48,48) to x41 (r48,41) and x55
(r48,55); similarly, the resolution length for x95 is not

the half distance from x86 to x90, but it is instead

related to the distances from x95 to x86 and x90
(Fig. 7d).

In general, a parameter (e.g., xi) and its neighbors

should provide a large contribution to the average

(the solution parameter xi) (Jackson 1972), and the

contributions (ri,j; j = 1, m) should decrease quickly

with increasing distance from xi to the other param-

eter (xj). Therefore, each row of the resolution matrix

(ri,j; j = 1, m) can be approximated as either a

Gaussian-shaped function (e.g., An 2012; Fichtner
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and Trampert 2011; Nolet 2008) or a cone (Barmin

et al. 2001). The row-vector curve may be similar to

the shape of a Gaussian function (e.g., r48,*; Fig. 7c),

but it can be quite different (e.g., r95,*; Fig. 7d). In

general, the width of the Gaussian function approx-

imation to the row-vector curves can represent the

resolution length (distance from xi to the borders of

the high-content segment) (Fig. 7c and d). For

example, the resolution lengths in Fig. 7c and d are

4 km for x48 and 9 km for x95, respectively.

4.2. Estimation from a Row or Column Vector?

The resolution length may also be estimated from

a column vector (e.g., Alumbaugh and Newman

2000; Smith 1997). RD is symmetric, such that the

resolution lengths estimated from its ith row and

column vectors are the same. However, regularization

directly influences the spread functions (or column

vectors), such that most of the resolution matrices

with regularization (e.g., RH) are asymmetric. There-

fore, the resolution lengths estimated from the ith

column and row vectors can be different.

The resolution lengths that are estimated from the

column and row vectors are largely the same or

similar when Tikhonov regularization is applied. The

resolution matrix RH(kI) is symmetric, such that the

lengths from its row and column vectors are same.

Higher-order Tikhonov regularizations (kLn) yield a

smoother column vector (r*,48 in Fig. 7e) than its

corresponding row vector (r48,* in Fig. 7e), and then

the lengths from the two vectors are largely similar,

as previously confirmed (Miller and Routh 2007;

Pilkington 2016), but with exceptions.

The column vector cannot provide a valid reso-

lution length for a parameter constrained by no

observations (e.g., x95 in Fig. 1a, b). The column

vector for the parameters in RH (e.g., r*,95 in Fig. 7f)

is all zeros, but the corresponding row vector is not

(r95,* in Fig. 7d), with a row-vector sum for R(S0)

(e.g., RH(L
n)) that is equal to one. The row vector can

provide a reliable resolution length in this case,

whereas the column vector cannot (Table 3).

The row vector may be unstable and possess

strong oscillations when large errors exist (e.g., r5,* in

Fig. 8a, c). The high-amplitude oscillations around

the diagonal entry of the row vector may imply an

illusion of high resolution. However, the correspond-

ing column vector in RH(L
n) is smoother (Fig. 8b)

than the row vector (Fig. 8a), such that the length

estimated from the column vector is more reliable

and less influenced by these large errors (Table 3).

In summary, the resolution length should gener-

ally be taken from the row vectors based on the

definition of the resolution length (Table 3). How-

ever, special cases (e.g., observation errors) may

yield an unstable row-vector curve that may in turn

influence the estimated resolution from this vector.

Therefore, it is advised to simultaneously extract the

resolution length from the row and column vectors of

the resolution matrix to ensure the resolution length is

accurately defined.

4.3. Resolution Estimations that are not from R

The spatial resolution in seismic tomography

studies is widely estimated via visual inspection of

the restoration of the synthetic structure (e.g.,

checkerboard tests) (Feng and An 2010; Lévěque

et al. 1993; Thurber and Ritsema 2009), as illustrated

in Fig. 10a–c. If the checker size can be recovered at

a given location, then the resolution length at that

location in the final result is at least the same as the

checker size. This method is powerful and easily

realized. However, the resolution length is qualita-

tive, not quantitative. Furthermore, the recovered

(x) and synthetic checkerboard pattern model (x) in

one test are equivalent to one pair of x and x. Several

tests cannot produce sufficient model pairs to provide

fully resolution information, as explained in the

‘‘Resolution matrices of the complete process’’

section.

The quantitative resolution length can still be

retrieved when no resolution matrix is given or

needed. The output solution x of a synthetic test using

an input model with a random structure x contains the

resolution information (An 2012). Quantitative reso-

lution information can be retrieved via a number of

approaches, including a comparison of many x and

x (An 2012), cross correlation of x and x (Trampert

et al. 2013), and autocorrelation of x (Fichtner and

Leeuwen 2015). The resolution lengths in Fig. 10d

were obtained using the An (2012) method on the

basis of limited pairs of random synthetic models and
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Figure 10
Example resolution lengths for a given tomography study of Rayleigh-wave dispersion at a period of 50 s. The figures are edited from Figs. 13

and 14 in Ma et al. (2014). a–c The resolution lengths are estimated using checkerboard tests, with the recoveries of three specific checker

sizes inspected. The statistical resolution lengths in (d) are estimated from synthetic random models
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solutions (Ma et al. 2014). The An (2012) method has

been easily realized in various studies (e.g., Chevrot

et al. 2014; Chiao et al. 2014; Lin et al. 2014; Ma

et al. 2014). The resolution length distribution

(Fig. 10d) is often easier and more informative for

the general reader than synthetic checkerboard

recovery tests (Fig. 10a–c) (Ma et al. 2014).

5. Resolvability and Constrainability

from the Resolution Matrix

Several essential questions arise when the real

model x cannot be fully resolved in x for an ill-posed

problem. For example, how much information from

x can be reflected in the solution x, or what is the

resolvability of xi (or the content of xi in xi)? How

much information from x is controlled by the obser-

vations? What is the constrainability (constraining

status) of an individual solution parameter xi under

given observations? These questions are not only

essential for understanding the reliability of the

solution, but also instrumental in providing basic

information to guide the improvement of the study

system. These questions are essentially centered on

the relationship between x and x, such that their

answers can be derived from the x ? x projection/

resolution matrix.

The ri,j entry in R represents the accurate content

or contribution of the jth model parameter xj to the ith

solution parameter xi. Therefore, the entries of the ith

content vector (ri,*) and their sum (Rri,*) are indica-

tors of the resolvability of xi and the constrainability

of xi. As previously mentioned, RH reflects the

combined effects of the observation matrix and reg-

ularization during the x ? x process, whereas RD

only reflects the observational effects. The reliability

of the practical solution has therefore been evaluated

via RH, but not RD. However, the constrainability of

the solution parameter xi under given observations

can be better obtained from RD than from RH for the

same reason. The factors rather than the observations

and regularization matrices can also influence the

reliability of xi; this cannot be reflected by RD and

RH, but can be by RC.

5.1. Resolvability Defined by the Main-Diagonal

Element

Equation (38) indicates that the main-diagonal

element ri,i reflects the content (or contribution) of

the real model parameter xi in (to) its counterpart xi.

This entry reflects whether xi can be resolved or how

much of xi is contained in xi. ri,i can therefore be

considered the resolvability of xi (Table 3) and has

received considerable attention for several decades

(e.g., Aki et al. 1977; Day-Lewis et al. 2005; Wiggins

1972).

The main-diagonal element ri,i (e.g., Fig. 4b for

Example 1) may take one of the following values:

• ri,i = 1 (as illustrated in Fig. 11a). The curve shape

of the elements in the ith row vector is a delta

function, where all of the elements are zero, except

ri,i. In this case, xi equals xi, which means that xi is

well constrained and xi can be fully resolved. If ri,i

is in RD, then the parameter xi is fully resolvable

under the given observations.

• ri,i = 0 (Fig. 11b). This case indicates that xi makes

no contribution to its counterpart xi and is

unresolvable. For example, parameter x95 in Exam-

ple 1 is not constrained by an observation (Fig. 1a,

b), such that r95,95 in both RD and RH is zero

(Figs. 3 and 4b), and x95 in xD equals zero

(Fig. 1c).

• ri,i [ (0,1). xi partially contributes to its counterpart

xi and is partially resolvable. If ri,i in RD belongs to

(0,1), then xi shares the observation with other

parameters (e.g., xj); xi therefore contributes to

both its counterpart xi and xj. For example

r1,1 = 0.1 in RD in Example 1 (Fig. 4b), which

indicates that x1 shares observation 1 with x2
(Fig. 1a); x1 therefore contributes to both x1 and x2.

The main-diagonal element ri,i in RD reflects the

resolvability of xi under a given observational

condition, such that the sum of all of the main-

diagonal elements, or trace(RD), can be considered

the resolvability of the model vector x. As RD is a

Gram matrix, trace(RD) equals the number of inde-

pendent observations (rank(G)). RD will therefore be

an identity matrix, and x can be fully resolved when

either trace(RD) or rank(G) equals the number of

model parameters (m).
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5.2. Deviation from the Expectation Given

by the Row-Vector Sum

Equation (38) indicates that xi equals the weighted

sum of all of the parameters in x, and Rri,* (or RiR) is

the sum of all of the weighted ri,*. If R is a stochastic

matrix, then a sum of one means that xi reflects the

true average of x (Nolet 2008) and lies at least within

the extremes of x. For example, if R1RD = 1 (Fig. 4a)

and r1,* in RD are positive (Fig. 3a), then x1 in xD is a

good representative of x1 (Fig. 1c). However, the

assumption is often false, as the entries in R can be

negative (Menke 2015) (i.e., R is often not a

stochastic matrix). For example, Rr1,* in RH(L
1) in

Example 1 equals one (Fig. 4a), but the parameter x1
in x(L1) (Fig. 1c) deviates from the expected average.

The polarity of ri,* must therefore be considered when

Ri(R) is used to judge the reliability of xi.

While RiR = 1 does not necessarily correspond to

the perfectness of xi, the deviation of RiR from one is

a good indicator of the deviation of xi from the true

model average (Table 3). A comparison of Figs. 4a

and 1c indicates that an overestimated (larger than the

model average) parameter xi (x54 in xD and x(I) in

Fig. 1c) corresponds to RiR[ 1 (e.g., R54RD and

R54RH(I) in Fig. 4a), and an underestimated (smaller

than the model average) parameter (x48 in xD and

x(I) in Fig. 1c) corresponds to RiR\ 1 (e.g., R48RD

and R48RH(I) in Fig. 4a).

5.3. Difference Between Neighboring Parameters

If the parameter xi is partially resolvable (ri,i [
(0,1)), then the solution parameter xi will include

content (ri,ii[ 0) from neighboring parameters (e.g.,

xii), and the ri,i and ri,ii entries in the ith row vector of

R can reflect the similarity between xi and xii.

When two neighboring parameters xi and xii (e.g.,

x60 and x61; Fig. 1a, b) are constrained by unrelated

observations, ri,i\ 1 and ri,ii = 0 (Fig. 11c), as

observed for r60,61 and r60,60 in either RD or

RH(I) (Fig. 3a and b). In this case, xii does not

contribute to xi (Eq. (38)), and xi does not contribute

to xii. It is possible to discriminate the difference

Figure 11
Illustration of the four constraining statuses for the ith solution parameter xi based on the elements of the ith row vector ri,*
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between xi and xii in xi and xii from the unrelated

observations, as x61 in either xD or x(I) is obviously

different from x60 (Fig. 1c).

When two neighboring parameters xii and xi (e.g.,

x13 and x14, which are constrained by the second

observation in Fig. 1a, b) are constrained by the same

or related observations, both ri,i and ri,ii (ii = i - 1 or

i ? 1; Fig. 11d) (e.g., r13,13 and r13,14 in either RD or

RH(I); Fig. 3a and b) are in the range (0,1). In this

case, xi has contents from both xii and xi. xii also has

contents from both xii and xi because of the symmetry

of RD. Consequently, xi and xii cannot be discrimi-

nated, and their difference is often related to the

difference Dri,ii:

Dri;ii ¼ ri;i � ri;ii

�� ��: ð57Þ

The difference between xi and xii in xD is often

very large when Dri,ii is large, even if the real model

parameters xi and xii are the same. When Dri,ii is

small, the difference is also small, even if xi and xii

are quite different. When Dri,ii is zero, xi is often

equal to xii. The solution parameters x13 and x14 in

either xD or x(I) are quite different (Fig. 1c), even

though the real model parameters x13 and x14 are

almost the same. Dri,ii is therefore a good indicator of

the difference between xi and xii (Table 3) if ri,i is less

than one, even though this difference has no relation

to the difference between xi and xii.

5.4. Short Summary on Constrainability

In summary, the constrainability of a solution

parameter can be quantitatively evaluated from its

content vector in a resolution matrix (Table 3). The

main-diagonal element (ri,i) can be considered the

resolvability of xi. If RD is used, then ri,i values of 0,

1, and (0,1) mean that xi is unresolvable, fully

resolvable, and partially resolvable, respectively, for

given observations. The deviation of the content

vector sum (Rri,*) from one can be considered an

indicator of the deviation from the model expectation.

Values of Rri,*[ 1 and\ 1 mean that xi is overes-

timated and underestimated, respectively. In the case

where Rri,* = 1 and all of the elements ri,* are

nonnegative, xi is the model true average. The

difference between ri,i and ri,ii (Dri,ii) is a reflection

of the difference between xi with xii for a partially

resolvable parameter xi (ri,i [ (0,1)). Large and small

Dri,ii values correspond to large and small differences

between two neighboring parameters, respectively,

although the solution difference has no relation to the

difference between the true medium parameters.

5.5. Constrainability from RH

Practical studies that employ regularization do not

provide RD, but rather RH. Estimation of the param-

eter constrainability under a given observation from

RH is necessary in this case to determine how much

information in the solution is from observation rather

regularization. As mentioned above, RH(kI) is the

most similar matrix to RD, making it a good

alternative to RD for evaluating the constrainability.

However, most of the main-diagonal elements in

RH(kI) are smaller than those in RD. The row vector

sum of RH(kI) may therefore be smaller than that of

RD, such that its deviation from one cannot be used to

evaluate the underestimated parameters. RH(kI) can
also be used to evaluate the well constrained param-

eters, as the curve shape of their row vectors is still a

delta function, even though ri,i may not be one.

RH(L
n) (n[ 0; e.g., RH(L

1) in Fig. 3c) is signif-

icantly different from RD (Fig. 3a). With the

exception of the unconstrained parameters, the

main-diagonal elements of RH(L
1) (ri,i and rii,ii) for

two neighboring parameters (xi and xii) that are

constrained by the same observation can be different

(Fig. 4b). The row-vector sum of RH(L
1) for any

single parameter equals one (Fig. 4a). Therefore, the

main-diagonal elements ri,i and row-vector sum

RiRH(L
1) cannot be used to evaluate the constrain-

ability of the parameter xi. However, the all-zero

column vectors of RH(L
n) (n = 0, 1, 2) for the

unconstrained parameters are the same as those in

RD, such that the unconstrained parameters and

unconstrained neighbors can be evaluated from

RH(L
n). Furthermore, the curve shape of the row

vectors of RH(L
n) (n = 0, 1) is similar to that of RD

(Figs. 1f and 3). The mutual relationship between two
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neighboring parameters can therefore be roughly

evaluated using Dri,ii of RH(L
n).

5.6. Resolution Upper Bound

RD is only related to G (Eq. (19)), with no

relationship to the observation data d with observa-

tional errors (dd) and other factors, whereas RH is

composed of both G and C. Regularization adds

artificial constraints to make the solution appear more

rational. However, various factors, including obser-

vational errors, regularization, and the instability of

the solution can decrease (but not increase) the

resolution reflected by RD. Therefore, the resolution

derived from RD marks the upper bound of resolv-

ability (Table 1).

While repeated observations can improve the

precision of the solution by improving the precision

in the observation data (d), they cannot increase

either rank(G) or the number of independent obser-

vations. Repeated observations therefore have no

effect on RD and cannot improve the upper bound of

resolution. The only way to improve the upper bound

of resolution is to increase the independent observa-

tions (or rank(G)).

5.7. What is a Perfect Inversion?

A perfect inversion, or a perfect constrainability,

corresponds to a resolution matrix that equals the

identity matrix I (e.g., Jackson 1972; Menke 1989).

However, this rule is only applicable for direct

resolution matrix RD, not the other resolution matri-

ces (e.g., RH or RC). A main-diagonal element ri,i of

one in RD means that xi can be fully resolved in xi,

thereby implying that a perfect inversion has identity

matrix of RD. RD always equals I except when the

problem is under-determined. However, RH includes

regularization, and regularization is largely employed

when the constrainability of the solution parameters

under a given observational condition is imperfect,

(i.e., trace(RD) is often smaller than m or the inverse

of G is unstable). Therefore, trace(RH) is always

smaller than trace(RD), regardless of the quality of

the regularization, such that RH will never be an

identity matrix I. Therefore, the perfectness of the

inversion cannot be judged based on the degree of

similarity between RH and I. The perfectness of a

study using regularization should be judged based on

the amount of valid information in G that is reflected

in the solution, as different regularizations yield

different solutions.

6. Resolution Matrices in Nonlinear Inversions

The relationship between x and x is different from

that between x (or x) and d (or d). The relationship

between x and x (r:x ? x) of a nonlinear problem

can be nonlinear, but can also be linear, such as when

true model x is perfectly resolved

(x = x = I x = r(x)). This indicates, the x ? x pro-

jection is a different relation with the problem but

relates with the ability of solving the problem. The

nonlinear inverse problem cannot be described by

either Eq. (6) or (9), such that neither RD (Eq. (19))

nor RH (Eq. (24)) can be obtained for the problem.

Anyway, Eq. (2) remains a valid linear projection

approximation of the nonlinear equation (Eq. (1)),

such that RC, which is directly obtained from Eq. (2),

can still be provided, regardless of the method used to

solve the problem.

A nonlinear inverse problem can be solved via

either a global optimization or linearized method. If

the problem is resolved using linearized iterative

methods (e.g., Aster et al. 2005; Bourgeois et al.

1989), such as Newton’s method, then a resolution

matrix can be obtained after each iteration (Jackson

1972) from either Eq. (19), Eq. (24), or a similar

equation. However, the resolution matrix is not any of

the above-mentioned resolution matrices (RD, RH,

RC, RI, and RS), but rather one of three new resolu-

tion matrices that are specifically constructed for

nonlinear inverse problems.

An iterative inversion is designed to invert for the

model perturbation Dxi (= x – xi–1) of the reference

model xi–1 at the ith iteration on the basis of the first-

order approximation of the inverse problem (Eq. (4)):

Ddi ¼ Gi
JDx

i: ð58Þ

where Ddi = d - g(xi-1) and GJ
i is a Jacobian matrix

with the partial derivatives of d taken with respect to

x at xi-1. Equation (58) is a linear equation, such that

the solution of the perturbation Dxi (Dxi) can be
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obtained from GJ
i and/or C using the same methods

that were employed to obtain the model solution

x from G and/or C in the above linear inversions (e.g.,

Eq. (11)). However, the inverted solution (Dxi) is a

model perturbation, not the model. The inverted

model (solution) after the ith iteration xi is xi-1-

? Dxi, which is the reference model at the next

inversion iteration. This is the general procedure of

Newton’s method.

A surface-wave inversion to constrain the S-wave

velocity structure (Example 3) (Fig. 12a) is syn-

thetized here to illustrate the three resolution matrices

that can be implemented in a linearized nonlinear

inversion. The employed inversion is a typical non-

linear inversion approach in geophysics that is widely

applied to elucidate 1-D and three-dimensional sedi-

mentary, crustal, and lithospheric Earth structures

(e.g., Feng and An 2010; Knopoff 1972; Snoke and

James 1997; Wiggins 1972; Xia et al. 1999); there-

fore, the details of the nonlinear relationship between

x and d are not explained here. First-order Tikhonov

regularization has been widely used in this inversion

approach, although it prevents the correction of bad

discontinuities in the reference model (An 2020). A

regularization approach that is adapted to the refer-

ence models suggested by An (2020) can overcome

this problem and lead to a rapidly convergent itera-

tive inversion; this regularization approach is used

here. The regularization parameter was set to

k = 0.01 after a series of tests that explored the trade-

off between the misfit and model flatness. The syn-

thetic observation (d) and predictions (Fig. 12a) and

partial-derivative matrix GJ
i (Eq. (58)) were calcu-

lated using the surf96 program (Herrmann 2013).

Given a reference model at the first iteration (the

starting model), the model solutions after the first to

fifth iterations (xi) and their fits to the reference

model are shown in Fig. 12a. The solution x5 after the

fifth iteration is nearly the same as x4 after the fourth

iteration, which implies that the inversion converged

around x4. x4 is, therefore, considered the final

solution.

6.1. Linear Approximation of r:x?x

The RC calculation for a nonlinear inversion is the

same as that for the above linear inversions, whereby

only the synthetic input models (x) and their corre-

sponding solutions (x) are used. This calculation,

which is based on either Eq. (43) or (47), is in fact a

linear regression of x and x (i.e., RC is a linear

approximation of r:x ? x) (Table 1) (Fig. 2a).

However, the relationship between x and x is often

nonlinear due to the complexity in the x ? x process

for a nonlinear problem. The calculation of a reliable

RC therefore requires more pairs of input/output

models. Furthermore, the resultant RC will somewhat

depend on the synthetic random input models. If they

are closer to the practical medium, then the resultant

RC will be more realistic.

6.2. Projection of Solution Improvement After

an Iteration

As Eq. (58) is of the same form as Eq. (6), the

process from Dxi (= x – xi–1) to Dxi (= xi – xi–1) after

the ith iteration can be expressed in a form similar to

Eq. (22) to represent the x ? x process (e.g., Jackson

1972; Wiggins 1972):

Dxi ¼ Ri
JDx

i ð59Þ

or:

xi � xi�1 ¼ Ri
Jðx� xi�1Þ; ð60Þ

where RJ
i denotes the resolution matrix R:Dxi ? Dxi.

Equation (59) is of the same form as Eq. (2), such that

RJ
i (denoted RJD

i) can be obtained via Eq. (19):

Ri
JD ¼ ðGi

JÞ
�gGi

J: ð61Þ

When the regularization matrix C is used, RJ
i

(denoted RJH
i) can be obtained via Eq. (24):

Ri
JH ¼ ðAi

JÞ
�tGi

J; ð62Þ

where AJ
i is the combination of GJ

i and C, which is

similar to how A is the combination of G and C in

Eq. (10). The matrix RJD
i (or RJH

i) is often denoted

R previously, but it possesses a different significance

than the resolution matrix R:x ? x.

The first-order Taylor expansion of Eq. (1) at xi-1

is:

xi ¼ xi�1 þ Jrðxi�1Þðx� xi�1Þ; ð63Þ

where Jr(x
i-1) denotes the Jacobian matrix (or the

gradient) of the projection r:x ? x at reference
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model xi–1. Equation (63) has the same form as

Eq. (59). Therefore, RJ
i is exactly the Jacobian matrix

Jr(x
i-1) (Table 1). Practically, RJ

i represents the

projection from x - xi-1 to xi - xi-1 (Eq. (59)) (i.e.,

the projection of the solution improvement on the

reference model (xi–1) just after the ith iteration) (e.g.,

Figure 12
Example resolution matrices for the solutions after iteration 4 of Newton’s iterations of the surface-wave dispersion inversion to determine the

1-D S-wave velocity structure. a Synthetic true model (x) and solutions (xi) for the 1-D S-wave velocity structure after the ith iteration.

Synthetic observations (d) and predictions d(xi) of the surface-wave dispersion curves for solution xi. b Complete resolution matrix RC for

solution x4 (i = 4). c RJH
4, which is the resolution matrix for solution improvement just after iteration 4. d Difference between RJH

4 and

RJH
1?4, which is the resolution matrix of the solution improvement on the starting model. Gaussian widths (red dashes) in (b–d) correspond

to the resolution length
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RJ
1 illustrated in Fig. 13b). The matrix RJ

i in

Example 3 (e.g., RJH
4 just after the fourth iteration

(Fig. 12c)) is slightly different than RC (Fig. 12b).

6.3. Projection of the Solution Improvement

up to an Iteration

The inversion after each iteration is represented

by Eq. (59), but an application needs one more

iteration. The solution improvement from the kth to ith

iterations can be expressed as:

xi � xk�1 ¼ Rk!i
J ðx� xk�1Þ; ð64Þ

where:

DRk!i
J ¼ DRi

J þ DRk!ði�1Þ
J � DRi

JDR
k!ði�1Þ
J : ð65Þ

If k = i just after the ith iteration of a given

inversion, then Eq. (64) should be the same as

Eq. (59). The matrix RJ
i?(i-1) = {0}, which means

that RJ
i?i = RJ

i. Therefore, if k = 1, then Eq. (64)

becomes:

xi � x0 ¼ R1!i
J ðx� x0Þ; ð66Þ

where:

R1!i
J ¼ Ri

J þ R
1!ði�1Þ
J � Ri

JR
1!ði�1Þ
J : ð67Þ

The matrix RJ
1?i represents the projection from

Dx (= x - x0) to Dx (= xi - x0), which is a projec-

tion of the solution improvement on the starting

model x0 after i iterations (xi - x0) (Fig. 13b). This

is different from the gradient of r:x ? x at xi (RJ
i), as

RJ
1?i is the slope of r:x ? x from x0 to xi (Table 1).

The magnitude difference between RJH
1?4, which is

obtained using RJH
1, …, RJH

4, and RJH
4 (Fig. 12d) is

remarkable. The matrix RJ
1?i better represents the

solution improvement in the inversion than RJ
i.

6.4. Four Types of Resolution Matrices

in a Linearized Inversion

The matrices RJ
i:Dxi ? Dxi and

RJ
1?i:Dx ? Dx in a linearized inversion can also

be obtained via the RC calculation. If the synthetic

perturbations Dxi (= x - xi-1) and solution Dxi after

the ith iteration are used as the true model x and

corresponding solution x, respectively, then the

resultant RC (denoted RJC
i) should be the same as

RJH
i:Dxi ? Dxi. If the synthetic perturbations

Dx (= x - x0) and corresponding solution Dx1?i

Figure 13
Illustration of resolution matrices in a linearized inversion. The model x contains one parameter (x1). a True model (x) and solution at each

iteration. b Projections with resolution matrices RC or RC
i (for r:x ? xi), RC

1 (for r:x ? x1), RJ
1 at first iteration (slope of r:x ? x at x0), and

RJ
1?i after i iterations (slope of r:x ? x from x0 to xi)
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(= xi - x0) are used, then the resultant RC (denoted

RJC
1?i) is the same as RJH

1?i.

Furthermore, if the synthetic x and corresponding

solution xi (= xi–1 ? Dxi) after the ith iteration are

used in the RC calculation, then the resultant RC

(denoted RC
i) (e.g., RC and RC

1 in Fig. 13b) repre-

sents the projection from x to xi (= xi–1 ? Dxi) just

after the iteration (Ri:x ? xi). This is one more new

type of resolution matrix that may appear in a

linearized iterative application. If xi is final solution

x, RC
i is written as RC.

In summary, completed resolution matrix for the

x ? x process can be obtained from the linear

approximation of r:x ? x, regardless of the method

used to solve a given nonlinear inverse problem.

However, a linearized iterative application can have

four classes of resolution matrices (Tables 1 and 2,

Fig. 13b), RC, RC
i, RJ

1?i, and RJ
i, which represent

the x ? x, x ? xi, (x - x0) ? (xi - x0), and

(x - xi-1) ? (xi - xi-1) projections, respectively.

R is a linear approximation of the operator r, whereas

RJ is the Jacobian matrix of r. The resolution matrix

RJH
i, which is often provided in the literature, reflects

the solution improvement just at the ith iteration. The

matrix RJH
1?i reflects the solution improvement of

the solution after all i iterations from starting model

to the solution xi.

The surface-wave dispersion inversion in Exam-

ple 3 highlights that even though the magnitudes of

RC, RJH
4, and RJH

1?4 (Fig. 12b–d) are obviously

different, their magnitude patterns (that of RJH
1?4 is

not shown here) are similar. The resolution lengths

estimated from the three matrices (Fig. 12d) are also

similar. Therefore, the resolution lengths retrieved

from either RJH
1?4 or RJH

4 in a surface-wave

dispersion inversion are also acceptable if RC cannot

be given.

7. Conclusion

Here, we reviewed previous resolution matrices

and their applications to clarify the properties of

resolution matrices in linear and nonlinear inversions

that implement zeroth- and higher-order Tikhonov

regularizations. We explained how to use the reso-

lution matrix to understand both the resolvability of

the medium parameters and the constrainability of the

solution parameters. Furthermore, we suggested a

new resolution matrix, the complete resolution

matrix, which reflects all of the factors in a study

system. This new matrix, which is able to overcome

many of the limitations encountered by previous

matrices, can be broadly applied in linear and non-

linear (inverse and non-inverse) problems. This study

is designed to assist the reader in fully understanding

both the concept and application of a resolution

matrix and in recognizing how to appropriately

appraise a solution and understand the relationship

between the solution and all of the factors in the

study. These matrix suggestions can guide the reader

in improving the study system.
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