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Abstract—The solution to an inverse problem is often resolved

by inverting the perturbation to a reference model of physical

parameters and using regularizations. However, the most com-

monly used higher-order Tikhonov regularizations, which are

unrelated to the reference model, are generally unable to correct

false variations in the reference model, since these regularizations

tend to minimize the model variations in the inverted perturbations.

A viable approach to overcome this shortcoming is to adapt the

regularization for the reference model such that a sharp variation

around a given position in the reference model (regardless of

whether the variation is true or false) receives a smaller weighting

in the regularizations. Linear and nonlinear inversion tests show

that this new adaptive regularization can improve the inversion

results at or around positions with either badly constructed or true

variations in the reference model.

Keywords: Tikhonov regularization, linear or linearized

inversion, tomography, adaptive regularization.

1. Introduction

Inverse problems can be resolved via two differ-

ent inversion schemes: Scheme 1, with inversions to

determine the best-fit model of physical parameters,

and Scheme 2, with inversions investigating pertur-

bations relative to a reference model. Scheme 2 is

termed the creeping strategy (Shaw and Orcutt 1985;

Parker 1994) because the inverted solution is the

model perturbation, and the model solution is the

summation of the reference model and inverted per-

turbation. This scheme is effectively driven by the

fact that it is easier to discover truth by building on

previous discoveries (Keith et al. 2016) or by stand-

ing on the shoulders of giants (I. Newton, Letter to R.

Hooke, 5 Feb. 1676). All previous discoveries can be

used to construct the reference model, such that

Scheme 2 is widely applied in practical studies. A

reference model allows many nonlinear inverse

problems to be resolved via linearization using the

first-order Taylor series approximation (e.g., Backus

and Gilbert 1967, 1968; Aster et al. 2005). Many

modern physical and geophysical tomographic stud-

ies, such as electrical resistance (e.g., Xu et al. 2016),

impedance (e.g., Vauhkonen et al. 1998; Babaeizadeh

and Brooks 2007), optical emission (e.g., Darne et al.

2013), and seismic body-wave (Nolet 2008) studies,

define the reference model as a crucial and necessary

component of the inversion process.

Both inversion schemes should yield the same

model solution if the inverse problem is linear and

well-posed. However, most practical inverse prob-

lems (e.g., Vauhkonen et al. 1998; Aster et al. 2005;

Xu et al. 2016) are often ill-posed, and ad hoc arti-

ficial regularization (e.g., Tikhonov 1963; Engl et al.

2000) is required to stabilize the inversion and reduce

bias in the solution. The above two schemes can yield

different model solutions when regularization is

applied. The model solution obtained via Scheme 2

(inversion for perturbations relative to a reference

model) may contain strange or false anomalies;

however, the appearance of these anomalies due to

the inversion process has not been comprehensively

investigated to date.

Here, the two inversion schemes using the most

commonly applied Tikhonov regularizations are

reviewed, the effects of Tikhonov regularizations on

the model solutions for the two inversion schemes are

described, and an adaptation of the Tikhonov regu-

larization to the reference model is proposed to

suppress false anomalies in the model solutions.

Examples of one-dimensional (1D) linear and non-

linear (linearized) inversions are provided to illustrate
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how adaptive regularization can improve inversion

results. This new adaptive regularization is also

applicable to two-dimensional (2D) and three-di-

mensional (3D) inverse problems.

2. Linear or Linearized Inversion

A series of observations d can be expressed sim-

ply in nonlinear form as a function g of a physical

model m:

d ¼ gðmÞ ð1Þ

or in linear form as:

d ¼ Gm ð2Þ

where the operator g is replaced by a matrix G.

The least-squares or minimum-norm solution m

of Eq. (2) can be determined by minimizing:

d�Gmk k2 ð3Þ

However, regularization (e.g., Levenberg 1944;

Tikhonov 1963; Engl et al. 2000) is necessary to

stabilize the inversion and reduce bias in the solution

when the inversion is ill-posed. The model solutionm

is then obtained by minimizing (e.g., Golub et al.

1999; Scales et al. 2001):

d�Gmk k2þk2 Lmk k2 ð4Þ

where L is an additional transformation to m and

k is the regularization parameter. Equation (4) rep-

resents the inversion equation for the first scheme,

which does not incorporate a reference model.

The inclusion of a reference model mref in the

inversion for m involves modifying Eqs. (1) and (2)

to invert the data residuals Dd (= d - Gmref), to

determine model perturbation Dm (= m - mref):

Dd ¼ GDm ð5Þ

where G is either a Jacobian matrix (the partial-

derivative matrix of d with respect to mref) for the

nonlinear problem in Eq. (1) or the same G in Eq. (2)

for the linear problem. Ill-posed problems require

regularizations, such that a similar equation to Eq. (4)

is employed to determine the solution:

Dd�GDmk k2þk2 LDmk k2 ð6Þ

Equation (6) represents the inversion equation for

the second scheme, which requires a reference model.

The perturbation solution Dm is obtained by mini-

mizing Eq. (6), and the model solution m is then

determined as m = mref ? Dm.

Equation (6) can be rewritten as:

ðd�Gmref Þ �Gðm�mref Þ
�
�

�
�
2þk2 LDmk k2 ð7Þ

and simplified to:

d�Gmk k2þk2 LDmk k2 ð8Þ

A comparison of Eqs. (4) and (8) highlights that

both equations contain two terms: the data-fitting

term (||d - Gm||2) and the regularization term

(||Lm||2 or ||LDm||2). The data-fitting term is the same

in both equations, but the regularization term is not.

Therefore, the regularization terms in the two inver-

sion schemes can potentially yield different model

solutions. The two inversion schemes will produce

the same model solution for the extreme case where

the reference model is 0 (mref = 0, such that

Dm = m and ||Lm||2 =||LDm||2). However, a nonzero

reference model raises the likelihood of ||Lm||2 =||

LDm||2, with potentially different model solutions

obtained via the two inversion schemes.

3. Tikhonov Regularization

There are many types of regularization (e.g., Engl

et al. 2000; Silva et al. 2001; Benning and Burger

2018) all of which are, by definition, artificial. The

most widely used regularizations in physical and

geophysical studies are the Tikhonov regularizations,

especially zeroth- and first-order Tikhonov regular-

izations, which are also known as damping and

flatness, respectively. The effects of these regular-

izations on the inversion results are illustrated by

resolving the synthetic linear problem shown in

Fig. 1. I present a simple synthetic 1D ray-tracing

problem (Fig. 1a) to illustrate the effects of regular-

ization on the inverted model parameters, where

model m contains the slowness (reciprocal of speed)

in each unit segment (1 km) to be resolved (mi, i = 1,

…, 100), each arrow indicates the raypath coverage,
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matrix G (Fig. 1b) contains the lengths of the eight

raypaths, and observation vector d contains the travel

times for the eight rays (dj, j = 1, …, 8). Equation (2)

highlights the linear relationship between the data

d and model m, and is applied here. This example is

an underdetermined inverse problem, as there are 8

observations and 100 unknown model parameters.

The gray-shaded model parameters (m51–m60 and

m96–m100) are intentionally set as being uncon-

strained by the observations, because no rays pass

through these model parameters.

3.1. Zeroth-Order Tikhonov Regularization

The zeroth-order Tikhonov regularization L0,

which is also termed L2-norm regularization or

damping (Levenberg 1944), is defined as an identity

matrix that regularizes individual parameter values

(e.g., Aster et al. 2005; Gregor and Fessler 2015).

Therefore, Eqs. (4) and (8) for the two inversion

schemes become:

d�Gmk k2þk2 mk k2 ð9Þ

and

d�Gmk k2þk2 Dmk k2 ð10Þ

respectively.

The damping regularizations in Eqs. (9) and (10)

try to minimize the norms of m (||m||2) and

Dm (||Dm||2), respectively. The model solution of

the first inversion scheme (Eq. 9) tends to range from

0 to the true model (mtrue), whereas the model

solution of the second scheme (Eq. 10) tends to range

from the reference model (mref, when Dm = 0) to the

true model (mtrue, when Dm = 0).

The inversion results via damping (L0) regular-

ization of the synthetic problem in Fig. 1 are shown

in Fig. 2. The inversion solutions in Fig. 2c were
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Figure 1
Illustration of a simple 1D ray-tracing linear problem. The model vectorm includes the slowness (reciprocal of speed) in each unit segment to

be resolved (mi; i = 1, …, 100). The matrix G, which is shown in b, contains the distance segments traveled by the eight rays (arrow lines in

a). The observation vector d contains the travel times for the eight rays (dj, j = 1, …, 8). d is linearly related to m via Eq. (2). This example is

an underdetermined inverse problem, as there are 8 observations and 100 unknowns. The gray-shaded parameters, m51–60 and m96–100, are

unconstrained, as no rays pass through these model parameters
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determined using different regularization parameters

k. A comparison of the inversion results, which

highlights the tradeoff between the data-fitting and

regularization terms (Eq. 10) for each inversion,

indicates that k = 1 is the optimal parameter via

Morozov’s discrepancy principle (Morozov 1984).

The same k value (k = 1) is used for all of the

inversions in Fig. 2a–c for comparison. The
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inversions are performed via singular value decom-

position with the same observation d and L0

regularization in each case. The results from

Scheme 1 via Eq. (9) are shown in Fig. 2a, and the

results from Scheme 2 via Eq. (10) are shown in

Fig. 2b, c using reference models with different

values for the 61st–71st model parameters. The 95th

and 96th parameters are neighbors that possess the

same values in the synthetic model mtrue (line with

black crosses, m95 = m96 in Fig. 2). However, the

95th and 96th inverted parameters from the damped

inversion via Eq. (9) (red circles in Fig. 2a) are quite

different to each other (m95 = m96), and exhibit

greater deviations from their true values than those

from the inversions via Eq. (10) (Fig. 2b, c). Such a

large deviation also occurs for the 50th and 51st

parameters from the inversion via Eq. (9) (Fig. 2a);

however, this deviation is not present in the results

via Eq. (10) (Fig. 2b, c). The synthetic results are in

line with expectations, since Scheme 1 permits a

larger solution range (from 0 to mtrue) than that of

Scheme 2 (from mref to mtrue). The other model

parameters that are well-constrained by the observa-

tions are reasonably retrieved by both inversion

schemes.

The test results imply that damping is helpful in

resolving ill-posed inverse problems, but it cannot

resolve poorly constrained parameters without a

reference model. An inversion that uses a reference

model [Scheme 2; either Eq. (6) or Eq. (10)] is

therefore preferred over Scheme 1 [either Eq. (4) or

Eq. (9)] for ill-posed practical studies using damping.

The results from different reference models (blue

lines in Fig. 2b, c) show that the true model can be

better retrieved when heterogeneities in the reference

model are consistent with the true model (green-

shaded region), whereas the true model cannot be

retrieved when the heterogeneities in the reference

model are different from those in the true model

(yellow-shaded region in Fig. 2c). This highlights

that the damping effect on inversion results relies on

the confidence of the reference model.

3.2. Higher-Order Tikhonov Regularization

A higher-order Tikhonov regularization Ln

(Tikhonov 1963) is defined as either the higher-order

derivative or partial derivative of a model or model

perturbation that further minimizes the variations

among neighboring inverted parameters. Therefore,

the Lnm and LnDm regularizations in Eqs. (4) and

(6), respectively, can be expressed as the nth-order

derivatives dnm and dnDm, respectively.

Here, only the first-order (n = 1) Tikhonov reg-

ularization (L1), which uses the first-order derivative

(d1m or d1Dm), is tested. The L1 regularization, also

called flatness, has been widely applied in various

practical inversions (e.g., Vauhkonen et al. 1998;

Aster et al. 2005; Gregor and Fessler 2015). The L1

matrix for the synthetic problem in Fig. 1 is given as

follows (Menke 1989):

L1 ¼
1 �1

. .
. . .

.

1 �1

�
�
�
�
�
�

�
�
�
�
�
�
99�100

ð11Þ

All of the entries on the ith row (L1
i) are zero,

with the exception of the ith and (i ? 1)th entries.

The regularization part (L1m) around the ith param-

eter mi in Eq. (4), L1
i m, can therefore be written as:

d1mi ¼ mi � miþ1 ð12Þ

where d1mi represents the difference between two

neighboring parameters (mi and mi?1) in m. There-

fore, the inversion via Eq. (4) tries not only to fit the

observation d, but also to minimize the difference

between two neighboring parameters in an attempt to

make neighboring parameters have the same values.

However, the inversion via Eq. (6), where the regu-

larization part (L1
i Dm) around the ith parameter Dmi

is:

d1Dmi ¼ Dmi � Dmiþ1 ð13Þ

bFigure 2

Inversions of the problem in Fig. 1 via L0 regularization (damping)

using three different reference models (blue lines). a All model

parameters in the reference model are zero, such that there is

effectively no reference model in the inversion. b The reference

model possesses two discontinuities (green-shaded areas) at the

10th and 60th parameters, as shown in the synthetic (true) model

mtrue (line with black crosses). c The reference model is similar to

that in b, with the exception of moving the discontinuity at the 60th

parameter to the 70th parameter (yellow-shaded area)
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tries to minimize the difference between the model

perturbations of two neighboring parameters in an

attempt to make neighboring parameters have the

same perturbations.

Figure 3 shows the inversion results for the

synthetic linear problem in Fig. 1 with flatness (L1)

regularization. The inversions in Fig. 3c were run

using different k values, with a value of one selected

on the basis of Morozov’s discrepancy principle

(Morozov 1984). This k value (k = 1) is used for all

of the inversions in Fig. 3a, b. The results from

Scheme 1 [via Eq. (4)] are shown in Fig. 3a, and

those from Scheme 2 [via Eq. (6)] in Fig. 3b, c using

different reference models. A comparison of the

results in Fig. 3a and Fig. 2a shows that the model

obtained via flatness regularization overcomes the

false abrupt variation around the 95th and 96th

parameters that appears on the model obtained via

damping regularization. The inversion with flatness

regularization is also less sensitive to sharp variations

than the inversion with damping regularization, and

retrieves a smoother model (line with red circles)

than the true model (line with black crosses). This

result is reasonable because L1 regularization tries to

make the neighboring parameters equal.

The results in Fig. 3 also demonstrate the impor-

tance of the reference model. A good reference model

whose heterogeneity is consistent with that in the true

model is helpful in improving the inversion results

(green-shaded regions), whereas a poor reference

model with inconsistent heterogeneity may worsen

the inversion results (yellow-shaded region), which is

similar to the damping regularization in Fig. 2. This

problem also exists in inversions using other higher-

order Tikhonov regularizations (Ln, n[ 1; not shown

here).

3.3. Problems and Possible Solutions

All of the above-mentioned inversions based on a

reference model are more capable of retrieving the

true model than the inversions without a reference

model for ill-posed inverse problems. However, the

model solutions in the above-mentioned regularized

inversions (e.g., L0 and L1) obviously rely on the

confidence of the reference model, as a badly

constructed reference model may worsen the model

solution. Both the damping (L0) and flatness (L1)

regularizations failed to correct the badly constructed

heterogeneities in the reference model (yellow-

shaded regions in Figs. 2c, 3c), and damping pro-

duced fake heterogeneities (the 75th–100th

parameters in Fig. 2b, c).

There are three possible methods for improving

the model solution in the second inversion scheme:

by (1) constructing a reference model that is as

reliable as possible; (2) using different regularization

parameters (k) or applying multiple regularizations

together; or (3) constructing a better regularization to

minimize the effects of a badly constructed reference

model. Method (1) is not feasible in most cases

because the confidence of the reference model is

generally unknown. Method (2) can influence the

solution when the regularization parameter k is

changed (e.g., Liu 2013; Pazos and Bhaya 2015).

However, tests (not shown here) using different k
values in Eq. (6) cannot improve the model solution

when it is contaminated by a badly constructed

reference model. Simultaneous flatness and damping

regularizations (e.g., Chang et al. 2010) are better

than using damping alone, but this approach is still

unable to avoid the problem caused by a badly

constructed reference model. Method (3) appears to

be the most feasible way to improve the model

solution, whereby a better regularization can weaken

the effects of a badly constructed reference model.

Here, the focus is on customizing a higher-order

Tikhonov regularization (Sect. 4), as damping is

seldom used alone during the inversion process.

4. Adapting A Higher-Order Tikhonov

Regularization For mref

A reference model is normally constructed based

on a priori information. The reference model (mref) is

not homogenous but rather heterogeneous, with

variation (|dnmref_i|C 0) around any model parameter

(e.g., the ith parameter mref_i). It is expected that a

false variation in the reference model should be

corrected by a variation in the opposite direction.

However, the L1 regularization used in the above

tests failed to correct badly constructed

M. An Pure Appl. Geophys.
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Figure 3
Inversions of the problem in Fig. 1 via L1 regularization (flatness) using three different reference models (blue lines). The reference models

and symbols are the same as in Fig. 2
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heterogeneities in the reference model because the L1

regularization in Eq. (11) is insensitive to the refer-

ence model. It is better to adapt the regularization for

a given reference model to weaken the effects of a

badly constructed reference model on the inversion

results.

Variations in the reference model around the ith

position (dnmref_i) can be:

• FALSE: dnmref_i is very different from dnmtrue_i.

This means that a large variation dnDmi in the

solution Dm is expected to correct the false

variation in mref. Equation (6) indicates that both

the observation (first term) and regularization

(second term) contribute to the inversion results:

a weaker regularization means a larger contribution

from the observations, and vice versa. A smaller

regularization than the general Ln regularization

around Dmi (L
n
i) is expected in the false case, such

that the observation plays a larger role in shaping

the inverted Dmi and its neighbors, thereby

producing a weakly regularized model with a

larger variation around Dmi to correct the FALSE

variation in mref. Therefore, a weaker regulariza-

tion than Ln
i can improve the inversion results for

the false case.

• TRUE: dnmref_i is similar to dnmtrue_i. This means

that a weaker regularization, which permits a larger

variation around Dmi, is unexpected. However, a

weaker regularization means a larger contribution

of the observation, which normally plays a positive

role in the inversion results, and will not worsen

the inversion results. Therefore, a weaker regular-

ization than the Ln regularization for the true case

is not bad for the inversion.

Therefore, a weaker regularization than the gen-

eral Ln regularization around the ith position (Ln
i)

with a large variation in mref is an appropriate

adaptation, regardless of whether the variation in the

reference model is false. Furthermore, the regular-

ization should be the same as Ln
i when the variation

is zero. We can ensure that these two requirements

are met by multiplying Ln
i by a weighting factor

(wi
n), which is a strictly decreasing function of the

variation degree at the ith position in mref (|d
nmref_i|)

and takes values in the interval (0,1]. wi
n for Ln

i can

therefore be defined as follows:

wn
i ¼

a

aþ dnmref i

�
�

�
�

ð14Þ

where a is a positive constant (with the same unit

as the model parameter) that is adjusted to ensure that

all of the wi
n values vary between 0 and 1. This new

adaptive regularization is noted as Ln(mref, a), or

simply Ln(mref).

This adaptive regularization becomes a general

regularization when wi
n in Eq. (14) is equal to 1,

which occurs when the model parameter hetero-

geneity |dnmref_i| is zero. wi
n is minimized [min(wi

n)]

when |dnmref_i| is maximized [max(|dnmref|)]. The

constant a therefore needs to be adjusted based on

max(|dnmref|). Tests have indicated that the smallest

weighting factor that is still effective in improving

the inversion is about 0.1. Therefore, the constant a

can be written as follows:

a � 0.1maxð dnmref

�
�

�
�Þ ð15Þ

In the case of flatness regularization (n = 1),

d1mref_i in Eq. (12) is the first-order gradient of the

reference model around the ith parameter of mref.

Multiplication of the L1 matrix in Eq. (11) by wn

yields the following:

L1ðmref Þ¼
w1
1 �w1

1

. .
. . .

.

w1
99 w1

99

�
�
�
�
�
�
�

�
�
�
�
�
�
�
99�100

ð16Þ

Figure 4 shows the inversion results with adaptive

flatness regularization L1(mref). The regularization

parameter k is the same as in Fig. 3 (k = 1) for

comparison. The max(|d1mref|) value is 0.15 (Fig. 3),

which yields a & 0.01 km s–1 via Eq. (13). The only

difference between the inversion configurations in

Fig. 4a, b is the reference model (blue lines). Both

show that the models with adaptive flatness (line with

magenta squares) are much better retrieved than those

with general flatness (line with red circles), regardless

of whether the variation in the reference model is

well constructed. The false gradient around the 70th

parameter (yellow-shaded region), which is caused

by the badly constructed reference model and L1

regularization, is not present in the models with

adaptive flatness regularization, and the true gradient

around the 10th parameter (left green-shaded region)

is preserved, confirming that L1(mref) regularization

M. An Pure Appl. Geophys.



is a better regularization approach, even if the refer-

ence model is well constructed. Note that another

large gradient around the 60th parameter (right green-

shaded region) in Fig. 4b is not improved due to the

lack of observations (gray-shaded region).

The test case in Fig. 4 illustrates the effectiveness

of the proposed adaptive regularization when the

number of model parameters (m) is much larger than

the number of observations (nobs) (nobs\\m). It is

ideal to perform further tests for the cases with nobs
& m and nobs[m observations, as more observa-

tions generally indicate a larger contribution of the

observations during the inversion, which weakens the

effect of regularization (||Lm||2) on the solution

[Eq. (4)]. I conducted an additional test with nobs &
m observations, which is shown in Figure S1 in the

supporting information. The test includes 10 model

parameters (m = 10) and 8 observations (nobs = 8). A

smaller k value (0.1) is needed for this quasi-balanced
problem, and the contribution of regularization to the

solution is much weaker than in the problem shown

in Fig. 4, as expected. However, the solutions via the

proposed adaptive flatness are still much better than

those via general flatness, thereby confirming the

effectiveness of the proposed adaptive flatness regu-

larization approach.
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Inversions of the problem in Fig. 1 via L1(mref) regularization (adaptive flatness). The lines with magenta squares are the L1(mref)-regularized

model solutions. The reference models and other symbols in a, b are the same as in Fig. 3b, c, respectively
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Data sampling of the model parameters in a

practical study is often uneven when nobs C m, such

that the model may contain repeatedly and/or poorly

controlled model parameters. The numbers of inde-

pendent observations and well-controlled parameters

are therefore less than or equal to m, such that the

rank of the observation matrix G is smaller than or

equal to m. Therefore, an inversion with

nobs C m observations is similar to an inversion with

nobs B m observations, which means that the test

cases with nobs\ \m (Fig. 4) and nobs & m (Fig-

ure S1) observations can also reflect the effect of

regularization for the case with nobs C m observa-

tions. This implies that the proposed adaptive flatness

regularization is superior to the general regularization

for a given case with any number of observations

(nobs[m, nobs & m, and nobs\m).

5. Application of L1(mref) Regularization

to a Linearized Inverse Problem

Surface-wave dispersion inversion for the S-wave

velocity structure is a typical seismological nonlinear

inverse problem that is widely applied to study 1D or

3D sedimentary, crustal, or lithospheric earth struc-

tures (e.g., Snoke and James 1997; Xia et al. 1999;

Feng and An 2010). This new adaptive L1(mref)

regularization was applied here to synthetic surface-

wave dispersion inversions (Fig. 5) and practical

studies (Fig. 6) to demonstrate the robustness of this

new regularization approach.

The model parameters m in the synthetic inver-

sions are the S-wave velocities at each depth

(Fig. 5b), and the observations d are the Rayleigh-

wave group velocities at each period (circles in

Fig. 5a). The nonlinear relationship between the

Rayleigh-wave group velocity and S-wave velocity

indicates that this problem is best resolved by

employing the second inversion scheme via Eq. (6),

which uses a reference model, where the matrix

G contains partial derivatives of the observations to

the reference model qd/qm. The synthetic observa-

tion and partial-derivative matrix G were calculated

using the program surf96 (Herrmann and Ammon

2002). The regularization parameter was set to k = 1

after a series of tests based on the trade-off between

the misfit and model flatness. Two inversions, each

with a different a value (0.2 and 0.02 km s–1), were

performed to demonstrate the effects of adaptive

regularization. The smallest wi
n weights for the two

a values are 0.4 and 0.067, respectively.

The inversion was run for only one linearized

inversion iteration to compare how well general

flatness regularization (L1 in Eq. 11) and adaptive

flatness regularization (L1(mref) in Eq. 14) fit the

observations to the true model. The S-wave velocity

profiles are shown in Fig. 5b. The true model (black

line) contains two layers with a sharp velocity

increase at 35 km depth. The reference model (blue

line), which is quite different from the true model,

contains a sharp velocity increase at 3 km depth and a

gradual velocity increase from 35 to 50 km depth.

The L1(mref)-regularized models (green and magenta

lines) exhibit a marked improvement over the L1-

regularized models (red line), and are therefore more

similar to the true model (black line), especially in

the yellow-shaded area where the reference model

contains a large false gradient. The min(wi
n) value,

0.067, in the inversion when using a smaller constant

a (0.02 km s–1) is much smaller than 0.4 when

a = 0.2 km s–1, which indicates a stronger adaptive

regularization with a = 0.02 km s–1, and that the

inverted result (magenta line in Fig. 5b) is closer to

the true model than the inverted model with

a = 0.2 km s–1 (green line). The structures at other

depths are not worsened (magenta line almost over-

laps with red line) where the reference model

possesses a reliable structure. Therefore, adaptive

flatness is also better than general flatness in a non-

linear (linearized) inverse problem, similar to the

presented linear inversion tests.

The lithospheric structure beneath the Paraná

Basin, SE Brazil, has been carefully studied using

surface waves recorded at seismic station RIFB via

linearized inversion (Snoke and James 1997) and

global optimization methods (Snoke and Sambridge

2002; An and Assumpção 2006). Here, a linearized

inversion was performed for the lithospheric structure

(Fig. 6) using the observations (phase and group

velocities of the Rayleigh and Love waves) in Fig. 5

of Snoke and James (1997). The inversions were run

for only one iteration by applying L1 and L1(mref).

The reference model (Fig. 6b) is the same as in

M. An Pure Appl. Geophys.
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Figure 5
Synthetic linearized surface-wave inversion using the L1(mref) adaptive flatness regularization. L

1(mref, 0.2) and L1(mref, 0.02) represent the

inverted results using L1(mref), and a = 0.2 and 0.02 km s–1, respectively. a Synthesized observations of the fundamental-mode Rayleigh-

wave group velocities (black circles) and predictions from the 1D S-wave velocity models in b. b The inverted 1D S-wave velocity models via

L1 (red), L1(mref, 0.2) (green), and L1(mref, 0.02) (magenta) regularization, together with the true (black) and reference (blue) models
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Fig. 5b, with a = 0.02 km s–1 and k = 1. The inver-

ted results are shown in Fig. 6. For comparison, the

model via global optimization (An and Assumpção

2006) is shown in Fig. 6 (labeled RIFB2006). The

inverted model in the first iteration via L1(mref)

regularization is much closer to RIFB2006 than that

via L1 regularization. This practical example con-

firms that adaptive flatness regularization is better

than general flatness regularization.

6. Conclusion

Regularized inversions of a reference model

involve regularizing the perturbation between inver-

ted and reference models. The inversions demonstrate

that a well-constructed reference model can help the

inversion, as expected. However, an ill-constructed

variation around a given position in the reference

model is difficult to be corrected when a non-adap-

tive regularization is used, as the regularization tends

to weaken variations in the inverted perturbation. The

adaptive regularization of the reference model that is

suggested here can improve the inversion, particu-

larly if the reference model possesses ill-constructed

heterogeneities.

Figure S1. Inversions of a model with 10 model

parameters regularized by adaptive flatness L1(mref).

(a) is the observation matrix G. The symbols in

(a) are the same as those in Fig. 1b. The symbols in

(b) and (c) are the same as in Fig. 4a and b,

respectively.
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