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S U M M A R Y
The resolution matrix of an inverse problem defines a linear relationship in which each
solution parameter is derived from the weighted averages of nearby true-model parame-
ters, and the resolution matrix elements are the weights. Resolution matrices are not only
widely used to measure the solution obtainability or the inversion perfectness from the data
based on the degree to which the matrix approximates the identity matrix, but also to extract
spatial-resolution or resolution-length information. Resolution matrices presented in previous
spatial-resolution analysis studies can be divided into three classes: direct resolution matrix,
regularized/stabilized resolution matrix and hybrid resolution matrix. The direct resolution
matrix can yield resolution-length information only for ill-posed inverse problems. The regu-
larized resolution matrix cannot give any spatial-resolution information. The hybrid resolution
matrix can provide resolution-length information; however, this depends on the regularization
contribution to the inversion. The computation of the matrices needs matrix operation, how-
ever, this is often a difficult problem for very large inverse problems. Here, a new class of
resolution matrices, generated using a Gaussian approximation (called the statistical resolu-
tion matrices), is proposed whereby the direct determination of the matrix is accomplished
via a simple one-parameter non-linear inversion performed based on limited pairs of random
synthetic models and their inverse solutions. Tests showed that a statistical resolution matrix
could not only measure the resolution obtainable from the data, but also provided reasonable
spatial/temporal resolution or resolution-length information. The estimates were restricted
to forward/inversion processes and were independent of the degree of inverse skill used in
the solution inversion; therefore, the original inversion codes did not need to be modified.
The absence of a requirement for matrix operations during the estimation process indicated
that this approach is particularly suitable for very large linear/linearized inverse problems.
The estimation of statistical resolution matrices is useful for both direction-dependent and
direction-independent resolution estimations. Interestingly, even a random synthetic input
model without specific checkers provided an inverse output solution that yielded a checker-
board pattern that gave not only indicative resolution-length information but also information
on the direction dependence of the resolution.

Key words: Inverse theory; Numerical approximations and analysis; Spatial analysis;
Tomography.

1 I N T RO D U C T I O N

A class of geophysical problems involves retrieving the covered
structure m (an m-vector including: m1, m2, . . . , mm) from an
outside observation d (an n-vector) on the basis of a forward
equation d = g(m). This is a typical inverse problem that yields
a solution m = g−g(d), where m (m1, m2, . . . , mm) is the ex-
pected solution vector and g−g is the true or generalized inverse
of the observation operator g. If the observation error δd is given,

the solution uncertainty δm can also be obtained. The determi-
nation or inversion of m has been a significant focus of mathe-
matical inverse studies for quite some time. Textbooks are readily
available (e.g. Menke 1984; Tarantola 1987, 2004; Parker 1994;
Aster et al. 2005), discussing methods for determining the so-
lution efficiently or at least acceptably. For example, for a very
large and sparse linear/linearized equation, a solution may be ob-
tained quickly by least square QR-factorization (LSQR) (Paige
& Saunders 1982a,b), which has become a standard algorithm
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for solving tomographic problems (Zhang & Thurber 2007); even
global solutions to complex non-linear problems may be efficiently
obtained via optimization methods (e.g. Goldberg et al. 1992;
Sambridge 1999; An & Assumpção 2004; Lawrence & Wiens
2004).

The determination of both m and δm are insufficient for a real
geophysical study. In geophysics, each parameter (e.g. mi) of a
model m represents information at a certain spatial or temporal
position, expressed as mi(x, y, z, t). The spatial and temporal res-
olutions (or the resolution length), that is, the size of the smallest
possible feature that can be detected, as a function of the position (x,
y, z, t) are relevant quantities and are informative for appraising the
solution m as well as the solution uncertainty δm. The computation
of solution’s spatial resolution is non-trivial, and is more difficult
than solving an inverse problem. Most geophysical studies, except
for tomographic studies, almost uniformly neglect the calculation
of a practical spatial resolution.

A generally preferable spatial-resolution estimate, widely used
in seismic tomography studies, involves visual inspection of the
restoration of a synthetic structure (e.g. checkerboard tests; Lévěque
et al. 1993; Thurber & Ritsema 2009; Feng & An 2010). The av-
erage resolution length in such cases is taken to be equal to half
of the recovered checker dimension (Lebedev & Nolet 2003). The
observation of small-scale heterogeneities in a visual inspection
assessment is too easily mistaken as an indicator of a high resolu-
tion, and the creation of synthetic structures required by the tests
becomes difficult for models with complex discretization.

An effective strategy for obtaining the model resolution-
length scale is the use of Backus–Gilbert resolution kernels
(Backus & Gilbert 1968), also referred to as a resolution ma-
trix. Backus–Gilbert kernels can indicate the finiteness of a model
parametrization, the incompleteness of data coverage and the ef-
fects of damping applied during the inversion (Ritsema et al. 2004).
The kernels have a finite spatial extent (Ritsema et al. 2004) cor-
responding to the resolution length. The resolution matrix can be
estimated easily for a moderate inversion (Berryman 2000a,b), and
this is also feasible for large-scale problems through Lanczos iter-
ation inversion (Jackson 1972; Yao et al. 1999; Zhang & Thurber
2007), the truncated singular value decomposition (SVD) inversion
(Aster et al. 2005; Kalscheuer & Pedersen 2007), the Choleskey
factorization inversion (Boschi 2003; Soldati & Boschi 2005) or
the resolution-matrix approximation (Nolet et al. 1999; Vasco et al.
2003).

Very large inverse problems can be solved using efficient meth-
ods, for example, LSQR (Paige & Saunders 1982b); however, es-
timating the resolution matrix of a large problem is non-trivial,
and not all resolution matrices can provide resolution-length in-
formation. The Backus–Gilbert resolution kernels treat essentially
underdetermined linear problems (Tarantola 2004), and every esti-
mate requires a full inversion of the system (Nolet 2008). A formal
resolution test, therefore, becomes impractical for extremely large
problems (Thurber & Ritsema 2009). In reality, the main utility of
a resolution matrix is to measure the resolution obtainable from
a data set according to the degree to which the resolution matrix
approximates the identity matrix (Jackson 1972; Berryman 2000b).
If the resolution matrix is an identity matrix, the solution m can be
taken as unique, each element is perfectly resolved (Jackson 1972;
Tarantola 2004), and the resolution length estimated from the reso-
lution matrix should only be determined by the parameter’s spatial
extent.

Several researchers have published other skills to calculate the
spatial resolution in typical inversions or tomographic studies.

Derivative weighted sums measure the sampling of each node;
they have long been used as an approximate measure of resolu-
tion (Thurber 1983; Toomey & Foulger 1989; Thurber & Eberhart-
Phillips 1999; Zhang & Thurber 2007). Yanovskaya & Kozhevnikov
(2003) estimated the radius of the averaging area in surface wave to-
mography to evaluate the resolution of the associated data. Fichtner
& Trampert (2011) explained how to retrieve resolution information
from the Hessian operator of an inverse problem.

Despite being crucial for solution appraisal, memory-efficiency
estimates of the spatial resolution of a general inversion have yet
to be developed. Here, a simple method is presented for inverting
a solution’s spatial/temporal resolution on the basis of a limited
number of forward and inversion calculations.

2 T R A D I T I O NA L R E S O LU T I O N
M AT R I C E S A N D R E S O LU T I O N L E N G T H

Spatial-resolution calculations often arise from an analysis of a res-
olution matrix (Nolet 2008; Thurber & Ritsema 2009). Resolution
matrices described in previous publications can be divided into three
classes, as introduced below.

Consider a linear inverse problem in which the forward and in-
verse equations can be expressed, respectively, by eqs (1) and (2):

d = Gm, (1)

m = G−gd, (2)

where G−g is a true or generalized inverse of an n-by-m observation
matrix G. Replacing d in eq. (2) by the expression in the forward
eq. (1) yields (Jackson 1972; Menke 1989):

m = Rm, (3)

and

R = G−gG, (4)

where R is an m-by-m matrix referred to as the model resolution ma-
trix, resolution operator or resolving kernels. Here, R is referred to
as the direct resolution matrix. Eq. (3), which embodies the basic as-
sumption underlying the Backus–Gilbert inversion method (Backus
& Gilbert 1968), defines a linear projection of which solution m can
be a local average calculated by integrating the model m. If G−g is
not calculated, SVD analysis gives the solution (Jackson 1972):

R = VVT, (5)

where V is unitary.
The main utility of a resolution matrix is to provide a measure

of the resolution obtainable from the data, and this measure is
based on the degree to which the resolution matrix approximates
the identity matrix (Jackson 1972; Berryman 2000b). If G is not
a full rank matrix, R will not be an identity matrix, which in-
dicates that some parameter (e.g. mi) in the model m cannot be
constrained well by the observation. The inverse problem under
such conditions is ill-posed. Figs 2(a) and (b) show the resolution
matrix R calculated by SVD for a simple underdetermined inverse
problem, shown in Fig. 1. The inverse problem gives a null value
for parameters in the range 86–100. These parameters are totally
unresolved. If the observation matrix G is a full rank matrix, R
should be an identity matrix because it is the product of a full
rank matrix G and its inverse. An identity resolution matrix such
as that shown in Figs 2(c) and (d) indicates that the model was
recovered exactly and that the inversion was perfect (Jackson 1972;
Tarantola 2004).
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Determining the spatial resolution 851

Figure 1. Illustration of a simple 1-D ray-propagation 100-parameter model (a) and its observation matrix (b). All model parameters were separated with a
distance interval of 1 km. Only five observations/rays were used, no observational constraints were imposed on the parameters corresponding to distances of
85–100 km in the observations; therefore, the inverse problem was underdetermined and the observation matrix in (b) was not a full rank matrix.

If a resolution matrix is a nearly diagonal matrix, each element
(e.g. mi) is in fact the weighted sum of nearby values mj, where mj

are near mi based on eq. (3) (Jackson 1972). The resolution ma-
trix can, therefore, provide some information about the resolution
length. For a full rank observation matrix G, the identity matrix R
(e.g. in Figs 2c and d) indicates that the resolution length at a posi-
tion mi only corresponds to the spatial extent of mi. Considering that
the half width of the recovered checker extent can be taken as the
resolution length (Lebedev & Nolet 2003), the half spatial extent
of a parameter, mi, can also be taken as the resolution length of
the parameter, given an identity resolution matrix. For the example
in Figs 2(a) and (b), the shaded squares indicate that the parame-
ters inside each square are constrained by a single observation and
should have the same inverted values. The resolution lengths of the
parameters located inside each square are half of the square width
and they are marked in Fig. 2(b) by horizontal red bars centred on
the diagonal elements of the matrix.

For an ill-posed problem, such as the underdetermined problem
shown in Fig. 1, regularization (e.g. damping, smoothness/flatness
or other a priori constraints, here represented by the k-vector c and
by the k-by-m matrix C) must be used to stabilize the inversion. The
forward equation then assumes a form similar to eq. (6):

b = Am, (6)

and

b =
[

d

λc

]
, A =

[
G

λC

]
, (7)

where A is an (n+k)-by-m matrix, and λ is the weight required to
balance the a priori constraints and observations in the inversion.
The solution to eq. (6) can be expressed by

m = A−gb. (8)

In an approach similar to that used to obtain the resolution matrix
R in eq. (4), the forward and inverse eqs (6) and (8) yield a new
resolution matrix R (referred to here as a regularized resolution
matrix),

R = A−gA. (9)

Many inversion applications use existing inversion programs di-
rectly. For example, iterative inversion systems such as LSQR (Paige
& Saunders 1982a,b) are often directly used in tomographic studies.
Because inversion programs only provide limited options to include
a priori constraints (e.g. in LSQR only damping is provided), if one
wants to use one’s preferred constraints, the simplest way is to take
the regularized vector b and matrix A, as expressed in eq. (6), as
the input observation vector and observation matrix in the inver-
sion programs, respectively. Subsequently the resolution matrices
provided by the programs are examples of a regularized resolution
matrix R. Basically, stabilization on the eq. (6) requires, at a min-
imum, that A is a full rank matrix. R should then be an m-by-m
identity matrix (e.g. in Fig. 2c) because R is the product of the
full rank A and its inverse. The identity resolution matrix R (e.g.
in Fig. 2c) indicates that the resolution length of each parameter
is equal to half the spatial extent of the parameter; however, the
resolution matrix R from the original forward and inverse equations
indicated that some model parameters could not be well solved, and
none of the parameters (Fig. 2a) have a resolution length equal to
half their spatial extent. The resolution matrix R cannot, therefore,
provide any resolution-length information. On the other hand, if
we still use the original observation vector d and matrix G in an
inversion program without any constraints, the resulting resolution
matrix R is meaningful, but the inversion itself is ill-posed.

The vector c is often an empty vector, the components of which
are zero. In this case, c can be ignored, and the vector b in the
inverse eq. (8) can be replaced by d. In this case, the solution to eq.
(6) will be identical to the solution to eq. (10),

‖Gm − d‖2 + ‖λCm‖2 = min . (10)

If C is the identity matrix, eq. (10) assumes the form of typical
Tikhonov regularizations. Furthermore a third class of resolution
matrix (R) may be obtained based on the forward eq. (1) and inverse
eq. (8),

R = A−gG. (11)

Here, R is referred to as a hybrid resolution matrix because it
combines the original observation matrix G and another matrix,
the regularized observation matrix A. The resolution matrices in
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852 M. An

Figure 2. Three resolution matrices for the underdetermined inverse problem presented in Fig. 1. Panels (b), (d) and (f) are the normalized matrices
corresponding, respectively, to the panels (a), (c) (e). The matrix in (c,d) is an identity matrix. The matrices are calculated by the SVD of (a,b) the G matrix and
its inverse, (c,d) the A matrix and its inverse and (e,f) the G matrix and the inverse of the A matrix. A is a matrix that combines G and the flatness constraints
C among all neighbouring parameters. The weight (λ = 1) is used here. In panel (a), all components of the resolution matrix for parameters, mi (i = 86–100)
are 0 because no information is available for the parameters in the observation matrix G. The extent of the square-like pattern indicates that the related solution
parameters should have the same value in this inversion problem. The extent can be taken as the resolution length of the solution parameters. The horizontal
red bars in (d,f) of each model parameter are the same as in (b), and indicate the resolution lengths from (a), but are centralized along the diagonal element of
the matrix.
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Determining the spatial resolution 853

many approaches (e.g. Crosson 1976), especially approaches that
offer spatial-resolution information (e.g. Barmin et al. 2001; Boschi
2003; Soldati & Boschi 2005), belong to this class. Obviously, even
for an overdetermined problem, the hybrid resolution matrix R is
seldom an identity matrix because it is the product of the observation
matrix G and the inverse of another matrix A, and the difference
between A and G often cannot be ignored. By the same reasoning, R
can provide information about the original observation matrix G, the
a priori matrix C, and the balance weight λ. The hybrid resolution
matrix R (Figs 2e and d) for the underdetermined problem shown
in Fig. 1 can be very similar to R (Figs 2a and b).

Consider an overdetermined (n > m) problem based on the prob-
lem presented in Fig. 1. A new observation matrix Go is defined as
the combination of the above G and the m-by-m identity matrix I,

Go =
[

G

I

]
. (12)

Using this new observation matrix Go, the direct resolution ma-
trix R is certainly an identity matrix (like Fig. 2c) because Go is a
full rank matrix. Then each solution parameter can be exactly de-
termined, even without a priori constraint. The resolution length at
a position at which a parameter located is equal to half of the spatial
extent of the parameter. R should also be equal to the identity ma-
trix; however, the identity of R with the identity matrix depends on
the weight λ. For a small weight λ, the spatial resolution indicated
by R in Fig. 3(a) is similar to that expected from the identity matrix.
For a larger λ, the hybrid resolution matrix (in Fig. 3b) ironically
becomes very similar to the resolution matrix of an underdeter-
mined problem, such as that presented in Fig. 2(e). This similarity
mistakenly indicates that the resolution length is much larger than
the real resolution length. Therefore, a poor value of λ may lead
to an incorrect estimate of the resolution length based on a hybrid
resolution matrix R.

The above discussion suggests that a direct resolution matrix R
can provide resolution-length information and the perfectness of the
inversion; however, this information is seldom pursued in studies

because the inversion is often ill-posed and must be regularized.
The second class of resolution matrices, R, can evaluate the inver-
sion perfectness for a given mathematic system, but such matrices
cannot provide resolution-length information. The third class reso-
lution matrices, R, can be used to extract resolution-length informa-
tion and to evaluate the perfectness of an inversion; however, these
matrices depend on the regularization contribution to the inversion.
From this perspective, it may be optimal to simultaneously calculate
all three resolution matrices in a given study, although it is often
impossible to perform the required matrix operations in the context
of very large inverse problems. Below, I will introduce a new class
of resolution matrices that are suited for very large inverse problems
and do not need matrix operation.

3 S TAT I S T I C A L R E S O LU T I O N M AT R I X
A N D R E S O LU T I O N L E N G T H

3.1 Basic equations for a linear problem

Unlike previous treatments, the goal here is to directly invert for
a resolution matrix based on the linear projection eq. (3). This
treatment is distinct from that applied in the previous three classes
of resolution matrices (R, R and R). Here, the inverted resolution
matrix is represented by the symbol, �, and the projection definition
from the real model to a calculated solution is expressed as eq. (13),

m = �m. (13)

Using eq. (13), any solution parameter mi can be expressed as:

mi =
m∑

j=1

ri, j m j , (14)

where ri,j is the ith row and jth column element of �. Each row
(e.g. ith row) of � is a resolution map that defines the contri-
butions of all model parameters to the ith solution parameter.
Alternatively, eq. (14) indicates that each solution parameter is

Figure 3. Hybrid resolution matrix calculated by the SVD for an overdetermined inverse problem using the weights (λ) of (a) 1 and (b) 10. The problem’s
observation matrix Go is a matrix that combines G from Fig. 1 and the identity matrix. The regularized matrix A combines Go and C.
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generally derived from the weighted averages of the neighbouring
model elements/parameters for a near-diagonal resolution matrix
(Jackson 1972). A small ri,j, indicates that the true model parameter
mj contributes little to the solution parameter mi.

A long resolution length indicates that neighbouring model el-
ement/parameter (mj) at a long distance from mi can contribute
significantly to the parameter mi. In this case, ri,i should be small
according to eq. (14) or, say, mi contributes little to mi. This implies
that the amplitude uncertainty (δmi) of the solution parameter mi

may be large. In general, a long resolution length may correspond
to a large uncertainty in the anomaly amplitude, and vice versa.

The sum of the weights can be a constant, ci, as expressed by:

m∑
j=1

ri, j = ci . (15)

If the summation ci is equal to 1, the solution parameter mi can be
considered as unbiased under the condition that eqs (13) or (14) yield
a true average (Nolet 2008). Otherwise, if ci �= 1,

∑m
j=1 ri, j m j in eq.

(14) is not the true average over the model parameters (Nolet 2008).
In this case, the weighted average of the model elements/parameters
should be written as:

mi =

m∑
j=1

ri, j m j

m∑
j=1

ri, j

. (16)

3.2 Direction-independent or 1-D resolution matrix
estimation

For a good inversion, the resolution matrix must be an identity
matrix or nearly diagonal (Jackson 1972), that is, a given parameter
(e.g. mi) and its neighbours can provide a large contribution/weight
to the average summation for a solution parameter (mi), and the
weights (ri,j, j = 1, m) should decrease rapidly with the distance from
mi to another parameter (mj); therefore, each row of the resolution
matrix (ri,j, j = 1, m) can be approximated by either a cone-shaped
function (Barmin et al. 2001) or a Gaussian function (e.g. Nolet
2008). Here, the approximation of a Gaussian function is used. In
one dimension, the approximate values of ri,j, the ith row and jth
column of �, in the Gaussian function can be written as

ri, j = ai e
− (x j −xi )2

2σ2
i = ai e

−
L2

i, j

2σ2
i = ai e

−
L2

i, j
2(wi /1.17)2 , (17)

where xi and xj represent dimension (e.g. x, y, z or t) positions for
mi and mj, Li,j is the Euclidian distance between the dimensional
positions of the parameters mi and mj, ai is a constant, σ i represents
the half width of the peak at ∼60 per cent of its full height, and
wi (=1.17σ i) is the half width at half maximum (and is often used
to represent the shape’s width). The spatial form (curve or surface)
of a Gaussian function is very similar to the form of a recovered
checker in a traditional checkerboard test. Since the half width of
the recovered checker dimension can be taken as the resolution
length (Lebedev & Nolet 2003), half of the Gaussian width, wi,
can be taken as the resolution length at the position mi; therefore,
wi will be referred to as the resolution length at position i. If ai is
not considered, a normalized inverted resolution matrix �̃ can be
constructed according to

r̃i, j = e
−

L2
i, j

2σ2
i . (18)

Replacing ri,j in eq. (16) by the expression given in eq. (17) yields

mi =

m∑
j=1

ai e
−

L2
i, j

2σ2
i m j

m∑
j=1

ai e
−

L2
i, j

2σ2
i

=
ai

m∑
j=1

e
−

L2
i, j

2σ2
i m j

ai

m∑
j=1

e
−

L2
i, j

2σ2
i

=

m∑
j=1

e
−

L2
i, j

2σ2
i m j

m∑
j=1

e
−

L2
i, j

2σ2
i

. (19)

If we write

f (wi , m) =

m∑
j=1

e
−

L2
i, j

2σ2
i m j

m∑
j=1

e
−

L2
i, j

2σ2
i

=

m∑
j=1

e
−

L2
i, j

2(wi /1.17)2 m j

m∑
j=1

e
−

L2
i, j

2(wi /1.17)2

, (20)

we obtain the equation

mi = f (wi , m). (21)

Because a resolution matrix does not depend on the specific model
or observation values, but rather on the exclusive properties of the
observation matrix G, we can use a random synthetic model to solve
eq. (21). Given a random synthetic model m1, we can calculate the
synthetic observation from m1 using eq. (1). We can then obtain a
solution m1 directly using the inverse eq. (8). For a very large inverse
problem, the forward and inversion calculations (e.g. inversion by
LSQR) are often much easier than to obtain the traditional resolution
matrices. If the model and solution given in eq. (21) are known, wi

becomes a unique unknown in eq. (21). In this case, eq. (21) can
be solved; however, the solution wi may depend on the given m1

and m1. For ns (>1) given different random synthetic models M
(=m1, m2, . . . , mns), we can obtain ns respective solutions M(=m1,
m2, . . . , mns), and we can construct ns non-linear equations similar
to eq. (21). wi is the only unknown in the equations and can be
obtained by minimizing eq. (22),

ns∑
l=1

∣∣ml
i − f (wi , ml )

∣∣ = min . (22)

In most real inverse problem, wi has a limited number of possible
values. For example, in a 1-D inversion for an equal thickness
layered model (e.g. see Fig. 1) with m parameters and thickness (h),
wi can be only one of 0.5h – mh. For the unique unknown eq. (22),
an exhausted grid search is the most powerful and easiest approach
to obtaining the resolution wi. As ns increases, the dependence of
wi on the given synthetic model decreases, and the final solution
wi can be obtained by increasing ns until wi becomes stable. By
repeating the above grid-search inversion at parameter positions
other than i, we can obtain all resolution lengths, wi (i = 1, m). The
full procedure outlined is indicatively illustrated by the flowchart
in Fig. 4.

After obtaining all wi (i = 1, m), we can directly construct a
normalized resolution matrix �̃ using eq. (18). Note that we can
obtain ai using eqs (14) and (17), and we can then construct the
inverted resolution matrix � using eq. (17); however, because we
mainly want to extract the resolution length from a resolution matrix,
which wi can provide directly, �̃ is mainly shown in the figures.

3.3 Method validity

The linear projection (eqs 3 and 13) from the real model to the
calculated solution to a linear inverse problem is well accepted and
widely applied in linear inverse studies. In contrast with the tradi-
tional resolution matrices obtained by operating on an observation
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Determining the spatial resolution 855

Figure 4. Flow chart of inversion for the resolution lengths. The procedure
can be divided into two steps: (1) generate synthetic models and invert for
solutions using your preferred constraints and inversion skill and (2) invert
for the resolution lengths.

matrix, the resolution matrix presented here may be solved directly
using random synthetic models and their respective solutions. The
solution to each synthetic model may be obtained by forward and
inversion processes on the basis of a real observation matrix and
other parameters (e.g. regularization), similar to the process used
to invert real data. The solution is influenced by all parameters and
methods used, from the forward calculation to the final inversion;
however, the traditional resolution matrices are determined only us-
ing the observation matrix and a regularization procedure; therefore,
the inverted resolution matrix presented here is not identical to the

traditional resolution matrices and may include more information
than is present in the traditional resolution matrices.

The flow chart (Fig. 4) and the associated discussion about the
inversion procedure indicate that the skill used here may be con-
sidered as a simple application of matrix-probing techniques on the
basis of randomization (e.g. Halko et al. 2011; Chiu & Demanet
2012; Demanet et al. 2012), while the inversion processes for the
matrices � and �̃ are more like a statistical analysis based on ran-
dom samples (random models and their respective solutions). This
is so, because the resulting solution (�) depends on the sample
number, which is introduced in detail later. Therefore, the inverted
resolution matrix (�) is referred to here as a statistical resolution
matrix, and �̃ is referred to as the normalized statistical resolution
matrix.

The above-mentioned approach was used to invert for the sta-
tistical resolution matrix (see Fig. 5) of the linear inverse problem
presented in Fig. 1. 25 (ns = 25) pairs of random synthetic mod-
els and solutions were used to invert for the statistical resolution
matrix. Fig. 5(b) showed that the resolution lengths at the positions
for the parameters mi(i = 1–85) were similar to those calculated
directly from eq. (4). These values were reasonable at the positions
for the parameters mi(i = 86–100). Because the flatness constraint
is associated with the parameters mi(i = 86–100), similar to the
neighbours mi (i = 81–85), the resolution lengths for the positions
of the parameters mi(i = 86–100) should be 10 km (the half width
of the spatial extent, 20 km) similar to the resolution lengths de-
termined using the inversion approach of this study, as shown in
Fig. 5(b).

During the extraction of resolution-length information from a
resolution matrix, it is assumed that the diagonal components of
each row should be largest, and that the values of the other compo-
nents should decrease as the distance from the respective component
to the diagonal component increases, as illustrated by the cone-
shaped function (Barmin et al. 2001) or the Gaussian function used
here, and also by Nolet (2008). However, the real resolution matrix
does not always behave in this way. The geometry of the resolution

Figure 5. (a) Statistical resolution matrix and (b) normalized matrix for the problem presented in Fig. 1. The statistical resolution matrix is inverted by the
SVD using 25 pairs of synthetic models and solutions. The models were constructed by adding ≤10 per cent random deviations onto a reference constant. In
panel (b), the red bars are the same as those shown in Fig. 2(b). The red contour marks indicate the half height position of the Gaussian shape, which is taken
as the resolution length of the statistical resolution matrix.
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matrices shown in Figs 2(a) and (e) is neither symmetric nor Gaus-
sian and differs from the above geometry variation assumption.
Ritzwoller et al. (2001) described a Gaussian smoothness constraint
on the solution parameters associated with a surface wave tomogra-
phy inversion and estimated the resolution lengths. This constraint
forces the solution parameters to satisfy an equation similar to m =
Cm, but the constraint does not directly influence the linear projec-
tion equation, m = Rm, which was the assumption used to estimate
the resolution length.

In general, the resolution length estimated from a resolution ma-
trix based on a specific geometry shape can often provide an approx-
imate indicator of the spatial resolution. The similarity between the
resolution lengths from, respectively, R and �, as shown in Fig. 5(b),
indicates that the approximation can adequately represent the real
resolution length for a linear inverse problem, at least for the inverse
problem in Fig. 1.

3.4 The flatness influences the inverted resolution length

The influence of flatness was tested by estimating the statistical
resolution matrices using different weights (λ) in eq. (7), which bal-
anced the flatness constraint and the synthetic observations. Here,
the forward eq. (6) was inverted using the LSQR, which is a con-
jugate gradient method. For λ = 1, the results shown in Figs 6(a)
and (b) were identical to those shown in Fig. 5. Fig. 6 showed that
the resolution lengths increased with the weights (λ) on the flatness
values, as expected. In general, a large weight indicates a large con-
tribution from the flatness constraint in the inversion and results in
a long resolution length.

3.5 Non-linear case

For a small model space around a real model (or, e.g. for a given
reference model m0 sufficiently close to a real model, m) the non-
linear forward equation, d = g(m), can be approximated using a
linearization procedure,

�d = G�m, (23)

where �d = d − g(m0) and �m = m − m0. Eq. (23) is similar to
eq. (1). Similarly, the statistical resolution matrix was defined as

�m = ��m. (24)

Using the above equation, an approximate statistical resolution
matrix for the non-linear problem could easily be determined based
on the approach described for estimating the statistical resolution
matrix of a linear problem.

On the basis of eq. (24) we obtain:

m = �m + m0 = ��m + m0. (25)

In an inversion iteration for a linearized non-linear inversion, the
inverse problem is, in fact, a linear inverse problem based on the
relevant reference model. If the linear inversion during the iteration
is perfect, the resolution matrix � can be the identity matrix I or,
say, � = I. In this case we obtain:

m = ��m + m0 = �(�m + m0) = �m. (26)

Eq. (24) is similar to eq. (13). However, the resolution matrices
defined by these two equations have different levels of significance.
The resolution matrix defined in eq. (24) does not represent the rela-
tion between the model and the solution like that in eq. (13) but it is
an approximate relation between the model difference and solution

difference for a given reference model. Therefore, we write � in eq.
(24) as �(m0). Eqs (23)–(26) indicate—but only when the given ref-
erence model is close enough to the true model and the linear inver-
sion for the iteration is perfect—that the resolution matrix defined in
eq. (24) can have a similar significance as that in eq. (13). However,
the above-mentioned conditions are rarely true for non-linear inver-
sion. Therefore, the resolution length estimated from �(m0) is often
not our expected absolute model resolution length for an inversion,
but an approximate resolution length of the model difference related
to a given reference model. The real model resolution length will
depend on both the reference model and the non-linearity of obser-
vation operator g of the inverse problem. In this case, the primary
use of the resolution length retrieved from �(m0) is to measure the
relative solution precision between parameters based on the degree
to which the row of the matrix approximates a delta function, on
the basis of the given reference model, as indicated by the example
below.

1-D S-velocity inversions from surface wave dispersions are typ-
ical seismological non-linear inverse problems widely applied in
crust and lithosphere studies. Although the hybrid resolution matrix
may be applicable to linearized inversions (Herrmann & Ammon
2002), no publications have explicitly described the spatial reso-
lution in related studies. Here, a synthetic example is presented
for calculating the matrices R and �(m0) for a 1-D inversion.
The spatial resolution is also estimated: see Fig. 7. The program
surf96 (Herrmann & Ammon 2002) was used to perform the for-
ward calculation and linearized inverse iterations, and outputs the
hybrid resolution matrix (R) at each inverse iteration. The vertical
S-velocity model included 39 layers (each 5 km thick) and a half-
space layer at the bottom (Fig. 7a), and damping in all inversions
was 0.01. The value of R at the 15th iteration is shown in Fig. 7(b).
The last column of the hybrid resolution matrix is related to the
bottom half-space layer, and each component in the column differs
significantly from the other components in the row. I discarded all
matrix components related to the bottom layer in the normalized
hybrid resolution matrix (Fig. 7c). On the basis of the output model
during the 15th iteration, I made 30 random synthetic models and
their respective inverted solutions using the program, finally the
statistical resolution matrix (Fig. 7d) was obtained by the method
suggested earlier.

As shown in the comparison in Figs 7(c) and (d), the spatial-
resolution lengths from the matrices R and �(m0) generally in-
creased with the depth. For example, the resolution lengths of R
increased from 12 km (the spatial extent of a parameter is equal to
the layer thickness, 5 km) for the 10th parameter to 25 km for the
20th parameter. The resolution lengths for �(m0) increased from
8 to 20 km. Non-negligible differences between the two resolution
matrices were observed. Besides the difference in the resolution-
length values of R and �(m0), the resolution lengths of the layers
at or near the model bottom (Fig. 7d) were very small (<10 km),
which differed from the conditions of the hybrid resolution matrix
(Fig. 7c). Because the statistical resolution matrix could be obtained
directly using synthetic models and their respective solutions, the
small resolution length at or near the bottom provided special in-
formation about the solutions to the random synthetic models. In
fact, a high spatial resolution for a parameter may indicate that
the parameter can be easily and well inverted. Fig. 7(a) shows that
the parameters at or near the bottom layer could approach the syn-
thetic model (black line) after only three iterations in this synthetic
example, indicating a high resolution in the layer at or near the bot-
tom. The small resolution length calculated based on the statistic
resolution matrix should, therefore, be reasonable.
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Determining the spatial resolution 857

Figure 6. Statistical resolution matrices (a, c, e) and normalized matrices (b, d, f) of the problem presented in Fig. 1, obtained using different weights and the
LSQR inversion method. The flatness weights were (a & b) 1, (c & d) 10 and (e & f) 20. The other properties are the same as those described in Fig. 5.
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858 M. An

Figure 7. Resolution matrices of a Rayleigh-wave dispersion inversion for a 1-D S-velocity model. The synthetic observation includes the Rayleigh-wave
group velocities over the periods from 5 to 185 s with intervals of 5 s. The forward calculation and the linearized inversion was performed using surf96
(Herrmann & Ammon 2002). The lines in (a) are the synthetic/true model (black) and the reference model or the output model at each linearized inversion
iteration, indicated by the coloured lines, which vary from red to blue with the iteration number. The blue line indicates the outputted model at the 15th iteration
and the red line indicates a constant velocity for all depths in the initial model. (b) The hybrid resolution matrix at the 15th iteration was the output of surf96,
and its normalization is shown in (c). The matrix components of the half-space were discarded in (c). The resolution matrix in (d) is the normalized statistical
resolution matrix based on the above-mentioned output model (blue line in panel a) at the 15th iteration.

3.6 High-dimension or direction-dependent cases

For nd dimensions (nd > 1), a Gaussian-shaped function for an
element ri,j at the ith row and jth column of � can be written as

ri, j = ai e
−

nd∑
k=1

(xk
j −xk

i )2

2(wk
i /1.17)2 = ai e

−
nd∑

k=1

Lk2
i, j

2(wk
i /1.17)2 . (27)

A resolution matrix for a specific direction can be expressed
similar to the equation given. For a resolution matrix that does
not depend on the dimension or direction, all wi

k (k = 1, nd) are
equal and can be written as wi. Therefore, the statistical resolution
matrix can be inverted using the same approach as was described
for the 1-D case, above. Otherwise, a resolution matrix may be in-
verted along each dimension separately using the equation with one

unknown. All wi
k (k = 1, nd) also can be inverted simultaneously.

Using the same approach described for eqs (19)–(22), we can obtain
nd–dimensional equations according to
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Determining the spatial resolution 859

We can then obtain eq. (29), which includes nd unknowns, wi
k

(k = 1, nd). The approach used to solve eq. (22) was also used to
obtain the unknowns by minimizing eq. (29),

ns∑
l=1

∣∣∣∣∣mi −
nd∑

k=1

f (wk
i , m)

∣∣∣∣∣ = min . (29)

4 D I S C U S S I O N

4.1 Required synthetic model number

The number of synthetic models determines the computational ef-
ficiency of the above approach. Each model and its respective solu-
tion are analogous to a measurement sample for resolution length,
wi. Consequently, the determination of the minimum number of
synthetic models required to provide a stable inversion of wi or a
resolution matrix can be considered as a statistical problem of min-
imum sample size determination on the basis of a given confidence
interval. Because a measurement is only taken for one parameter
(wi), the minimum sample number (ns) will not depend on the total
number of parameters in the model but instead on the number of all
possible values of wi. As pointed out, with increasing ns, the mean
effect of all samples can result in a stable wi that is close to the true
resolution length. Therefore, this problem can be taken as satisfying
the central limit theorem.

The central limit theorem states that when the sample size is large,
sample means will fall within ±Zα/2 times the standard errors of
the population mean, that is,

w̄i − Ei < wi < w̄i + Ei , (30)

and

Ei = Zα/2

(
di√
ns

)
, (31)

where Ei is called the margin of error, Zα/2 is a constant for the
relevant confidence level, and di is the standard deviation of all
possible wi. If the margin of error is known, the minimum sample
size for the given confidence level can be obtained as:

ns =
(

Zα/2di

Ei

)2

. (32)

For the 1-D example in Fig. 1, the real wi can only be in the range
of 0–20h. If all possible values of wi have the same probability, the
standard errors of the values, di, should be ∼5.8h. If the 95 per
cent confidence level is used, Zα/2 = 1.96. If we assume a margin
of error (Ei) of 2.5 h, we obtain ns = 20. As described, a real test
showed that 25 synthetic models (ns = 25) were sufficient to obtain
a stable wi.

The minimum sample number was also tested for by preparing a
large inverse example. Here, a 2-D Rayleigh-wave group-velocity
tomographic inversion was performed on the Antarctic. The in-
verted results using real observations of the Antarctic will not be
discussed here, rather, the observation matrix will be used as an ex-
ample for extracting the resolution-length information. The inverse
horizontal 2-D model was parametrized using 12 163 equal-area
hexagonal and pentagonal cells with widths of ∼1 great-circle de-
gree (see Fig. 8a). The application of traditional checkerboard tests
on the tetragonal cells was impossible due to the use of hexagonal
and pentagonal cells. The inversion was a linear inverse problem,
and LSQR was used here to obtain a solution. For this problem, the

possible values of wi are in the range of 0◦–15◦, and the standard
errors of the values should be ∼4.35◦; if the margin of error is
∼0.5◦, the minimum sample number (ns) should be ∼290 at the
95 per cent confidence level according to eq. (32). Figs 8(b) and (c)
present a random synthetic model and its inverted solution. Statis-
tical resolution matrices were obtained using different ns pairs of
random synthetic models and their respective solutions; the resolu-
tion lengths from the matrices using 20, 200 and 300 samples are
shown in Figs 8(d)–(f). A comparison among Figs 8(c), (d) and (f)
reveals that ns = 300, which is similar to the predicted minimum
sample number above and sufficient to obtain a stable resolution
length for the entire study region. The resolution lengths (Fig. 8f)
are consistent with the path coverage (Fig. 8a). For example, within
the continental Antarctic, the path density was high (Fig. 8a); the
resolution length (Fig. 8f) was also high and approached the cell
dimensions.

In the 1-D tests using 100 parameters, as described, 25 synthetic
models (ns = 25) were sufficient to obtain a stable wi. Here, a
2-D example with 12 163 parameters required only 300 models.
The tests showed that fewer than several hundred pairs of synthetic
models and solutions produced a stable wi, and the minimum num-
ber of synthetic models depends on the possible values of wi but
not on the number of parameters. The minimum sample numbers
in the real tests are similar to the prediction by the central limit
theorem.

4.2 Does the inversion of a random synthetic model
simulate a checkerboard test?

Interestingly, the solution pattern (Fig. 8c) for a random synthetic
model (Fig. 8b) submitted to the tests described based on the
2-D Rayleigh-wave group-velocity tomography of the Antarctic re-
sembled a checkerboard test output. The inverted solution for any
random synthetic model was found to display notable patterns sim-
ilar to the output of a traditional checkerboard test using an input
model with checker pattern anomalies. The anomalous pattern size
in each solution (Fig. 8c) was comparable to the resolution-length
scale estimated from the resolution matrix analyses, as shown in
Fig. 8(f).

The checker-like patterns in the solution based on a random syn-
thetic model are also shown using ∼4◦-wide equally sized cells (see
Fig. 9). Tests (not shown here) on a linearized inversion for a 3-D
random synthetic model also yielded a checker pattern solution,
similar to that shown in Figs 8(c) and 9(c). These tests demon-
strated that even though the inverted solutions should depend on the
respective random input models, the inverse output solution of any
random synthetic input model directly yielded a specific checker
pattern that can give some indicative resolution-length information.

The resolution length corresponds to the size of the smallest pos-
sible feature that can be detected. For a given resolution matrix, the
resolution length at the position of a parameter is consistent with the
number of neighbouring parameters, which make an obvious con-
tribution to the solution parameter; see eq. (14) and Fig. 2(b). The
inverted solutions (e.g. Figs 8c or 9c) revealed that the resolution
length at the position of a parameter (Figs 8f or 9d) is consistent
with the number of neighbouring parameters which have a value
similar to that of the parameter in the inverted solution; in contrast,
the parameters in the synthetic/real model (Figs 8b or 9b) are not
similar to one another. Put simply, the resolution-length estimation
can be considered as an analysis of how many neighbouring pa-
rameters have similar values to each other around a given position.
According to this idea, the resolution length could be estimated
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860 M. An

Figure 8. Resolution-length information for an ∼1◦-wide cell 2-D Rayleigh-wave dispersion tomography set over a period of 50 s. Panel (a) shows the cells
and the 5384 rays from source (circles) to station (triangles) used in this example. Most of the sources are earthquakes, and a few are seismic stations for
ambient-noise cross-correlation rays. Panel (b) shows one random synthetic 2-D model, (c) shows the inverted solution to the synthetic model in (b); (d–f)
show the spatial-resolution maps from 20, 100 and 300 pairs of random synthetic models and their solutions.
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Determining the spatial resolution 861

Figure 9. Resolution-length information for an ∼4◦-width cell 2-D Rayleigh-wave dispersion tomography set for a period of 50 s. Subpart (a) shows the cells
and the 5393 rays used in this example. The rays are nearly the same as those in Fig. 8(a). Subpart (b) shows one random synthetic 2-D model, (c) shows the
inverted solution to the synthetic model (b); (d) shows the resolution-length map for 300 pairs of random synthetic models and their solutions.

directly via visualization of the solution inverted from a random
synthetic model. Following this line of reasoning, variation in the
model/solution parametrization (e.g. absolute value of the physical
quantity, anomaly and relative anomaly) may influence the inver-
sion for a statistical resolution matrix especially for a linearized
non-linear inverse problem. It seems that the anomaly or relative
anomaly could be superior in the model/solution parametrization
when retrieving resolution-length information using the approach
presented earlier.

Even though the information obtained from the inverted solu-
tion of a random synthetic model depends on said synthetic model,
the visualization of the solution inverted from a random synthetic
model can not only give some indicative resolution-length informa-
tion (as explained), but it can also yield the direction dependence

of the resolution. Because most of the observation stations (Fig. 8a)
are located inside continental Antarctica and earthquakes originate
at the plate boundaries, the rays have a better defined cross-section
at a position far from the plate boundary, while rays at positions
close to the plate boundary are oriented much more parallel to their
neighbouring rays. In practice, the resolution length along the par-
allel direction (nearly parallel to the meridians) of the rays should
be longer than that in the normal direction (nearly parallel to the
latitude). In the solution (Fig. 8c) inverted from a random synthetic
model, most of the anomaly pattern looks like a strip with a long
axis along the meridian and a short axis along a line of latitude,
especially for the oceanic region where the patterns of the anomaly
in the input synthetic model (Fig. 8b) exhibit little similarity to the
strip anomaly in the solution. According to the reasoning above, the
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strip anomaly pattern in the oceanic region should indicate that the
resolution length along the meridian is longer than that along the
line of latitude in the oceanic region, which is consistent with
indications from the ray distribution.

4.3 Resolution lengths of discontinuities between
neighbouring parameters

Discontinuities or sharp variations between neighbouring model
parameters (e.g. mi and mj) provide important information in geo-
physical studies. Therefore, the resolution lengths of a discontinuity
are needed for an inversion, if possible. Using eq. (14), an equa-
tion was obtained describing the differences between neighbouring
parameters,

�mi, j = mi − m j =
m∑

k=1

(ri,k − r j,k)mk . (33)

Eq. (33) indicates that the differences between two solution pa-
rameters (mi and mj) depend not only on the entire model, but also on
the resolution matrix corresponding to the ith and jth row elements.

For a perfect inversion, each row of the resolution matrix is a
delta function, and eq. (33) can be written in terms of eq. (34),

�mi, j =
m∑

k=1

(ri,k − r j,k)mk = mi − m j = �mi, j . (34)

Eq. (34), corresponding to a perfect inversion, can only indicate
the differences between two neighbouring parameters that can be
well solved; however, although the width of a discontinuity (such
as a Moho) may be infinitely small or thin, the discontinuity can-
not be localized to the border between two parameters. In fact, it
can only be concluded that the resolution length of a discontinuity
does not exceed the sum of the half spatial extents of two parame-
ters, and the real resolution length of a discontinuity can be much
shorter. Fig. 2(a) provides an example showing that the disconti-
nuity resolution length at some depth (e.g. 30 or 60 km) can be
much higher than the resolution length of a model parameter if the
discontinuity is located on a cell’s boundary. A simple way to ob-
tain a reasonable resolution length of a discontinuity in a perfect
inversion is to decrease the parameter spatial extent and re-calculate
the resolution matrix until the matrix rows associated with the dis-
continuity are not delta function. The parameter spatial extent can
then be taken as the largest bound on the discontinuity resolution
length.

4.4 Computation requirements and efficiency

Our approach to calculating the statistical resolution matrix can be
divided into two steps: the first step is to create tens or hundreds
of random synthetic models and solutions; the second step is to
directly invert for the resolution lengths using these synthetic mod-
els and solutions. The first step is similar to the procedure used in
traditional checkerboard tests; however, the input model is easier
to create because it is a random model without a regular anomaly
pattern distribution. The forward calculation and the solution inver-
sion procedure applied in the first step are basic calculations for an
inversion study. The only coding burden for the skill presented here
is to write a short program that inverts the synthetic models and their
respective solutions to identify the resolution lengths using a grid
search. This coding effort is trivial because it is a one-parameter
inversion, and the grid search is the simplest of the inversion
methods.

The second step, involving a grid search for the resolution-length
scale, does not require much memory. The primary memory con-
sumption involves retaining tens or hundreds of pairs of models
and their solutions in memory for use in the grid-search inversion.
The maximal memory required for the computation approaches 2 ×
ns × m, where ns is generally not more than several hundreds and m
is the model parametrization size. The advantages of the approach
described here are that the maximal memory consumption is much
smaller than that required from a calculation of the resolution ma-
trix using matrix operations. The idea presented here is especially
suitable for very large inverse problems. If the information of the
models and solutions are stored on a disk, the memory burden will
approach zero, but the computation time will be much longer due
to the need for frequent disk reading actions.

The skill presented here is isolated from the specific for-
ward/inversion procedure and does not directly use any relation
between observation and model parameters such as observation
matrix/operators. Therefore, it can be applied to general inverse
problems. For the same reason, one should not be surprised that the
skill may have a worse computational efficiency than other skills
using the relation between observation and model parameters of the
relevant inverse problem. For example, for a small-scale inversion
using SVD, the direct/regularized/hybrid resolution matrices can
be obtained easily using decomposition matrices from the observa-
tion matrix, but calculation of a statistical resolution matrix needs
much more time, because ns forward/inversion computations and m
one–unknown grid searches for resolution lengths are needed. On
the other hand, since ns is often much smaller than m for large inverse
problems, the efficiency of statistical resolution matrix computation
is better than that of brute-force calculations of Backus–Gilbert ker-
nels, because the latter need to solve the system m times, and the
computation time to solve the system normally is much longer than
a one–unknown grid search for the relevant resolution length.

Lanczos iteration inversions, such as LSQR, can be used to
quickly obtain the solution and they have been widely applied to
large linear inversions. After some modifications to the inversion
codes, a resolution matrix can be obtained (e.g. Yao et al. 1999;
Zhang & Thurber 2007). Because inversion programs only pro-
vide limited options to include a priori constraints, if one wants
to use one’s preferred constraints, the simplest way is to take the
regularized vector b and matrix A, as expressed in eq. (6), as the in-
put observation vector and observation matrix, respectively. In this
case, the output resolution matrix is a regularized resolution ma-
trix which cannot give any resolution-length information, as shown
earlier. Mostly, researchers engaged in tomographic studies have to
perform checkerboard tests, which can give indicative resolution-
length information. The skill presented here can be applied directly
to these inversions to obtain resolution lengths. Lanczos iteration
inversions are efficient, which will ensure the efficiency of the sta-
tistical resolution matrix computation. For the reasons outlined, sta-
tistical resolution matrix computations may be particularly suitable
for applications of Lanczos iteration inversions.

A discussion to improve the efficiency of the first step of the
forward/inversion computations is beyond the scope of this paper.
As for the second step, the efficiency of grid searches for resolution
lengths can be easily improved for modern computers equipped with
processors containing more than a single core. The one-parameter
grid-search inversion for the relevant resolution length must be re-
peated for all model parameters. Modern parallel computational
approaches (e.g. OpenMP: see www.openmp.org) suitable for re-
peating calculations, can be easily applied to these codes, which
decreases the computation time significantly.
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In general, the computation efficiency of the skill presented here
may be worse than that of some other skills. However, the skill
discussed here can be applied to general problems, and needs little
coding work and computation memory. The computation efficiency
can be improved using modern parallel computing approaches. Sta-
tistical resolution matrix computation may be particularly suitable
for application of Lanczos iteration inversions, because the appli-
cation can quickly obtain a solution although it is difficult to obtain
resolution lengths.

5 C O N C LU S I O N S

Applications of the Backus–Gilbert inversion method are few; how-
ever, the basis of the inversion (resolution matrices and kernels that
connect real models to calculated solutions) are widely used to eval-
uate inversion perfectness and to analyse the spatial resolution of
a linear inversion. The resolution matrices described in previous
publications fall into three classes: (1) direct resolution matrices,
which are the product of an observation matrix and its inverse; (2)
regularized resolution matrices, which are the product of a regular-
ized observation matrix and its inverse; (3) and hybrid resolution
matrices, which are the product of an observation matrix and the
inverse of the regularized observation matrix. The first class of ma-
trices provides resolution-length information and the perfectness of
the inversion but is seldom presented in studies because the inver-
sion is often ill-posed and must be regularized. The second class
matrices can be used to evaluate the inversion perfectness under a
given mathematical system, but these matrices cannot provide any
information about the resolution length. The third class of resolu-
tion matrices can be used to extract resolution-length information
and to evaluate the perfectness of an inversion; however, these ma-
trices depend on the contributions of regularization to the inversion.
The simultaneous presentation of all three resolution matrices in a
study could fully articulate the inversion perfectness and resolution-
length information. Unfortunately, it is often impossible to perform
any of these calculations in the context of very large inverse prob-
lems. Here, a new class of resolution matrices, called the statistical
resolution matrices, is suggested to permit the direct inversion from
synthetic models. These matrices are especially suitable for very
large linear/linearized inverse problems.

A resolution matrix defines a linear projection in which each so-
lution parameter is derived from the weighted average of the neigh-
bouring solution parameters and the resolution matrix elements are
the weights. Ideally, a parameter and its neighbours provide a large
contribution/weight to the average summation for a parameter in
the solution; therefore, all elements in each row of the resolution
matrix are assumed to be Gaussian functions over the parameter
distances. The resolution matrix exclusively provides the properties
of the observation matrix but does not depend on any particular
model or observation values; therefore, random synthetic models
and their solutions may be used, and the projection equation be-
comes a non-linear inversion of only one parameter, the width of
the Gaussian shape. The projection can then be directly inverted
using a simple grid-search method. The inverted widths directly
indicate the resolution length.

The tests described here showed that the statistical resolution
matrix not only measures the resolution obtainable from the data, it
also provides reasonable spatial/temporal resolution or resolution-
length information. Estimates of the statistical resolution matrix can
be used for both direction-dependent and direct-independent resolu-
tion estimates. The estimates depend on the real forward/inversion
processes and are independent of the approach used to determine

the solution inversion. Therefore, it is not necessary to modify the
preferred forward/inversion codes/methods if a user wishes to ob-
tain the resolution length. Matrix operations are not needed in the
estimation, indicating that estimating the statistical resolution ma-
trix is especially suitable for very large linear/linearized inverse
problems.

Interestingly, the tests showed that for a random synthetic input
model without a specific checker pattern, the inverse output solution
directly provided a checkerboard anomaly pattern that indicatively
provided information on not only the resolution length but also on
the direction dependence of the resolution.

All the codes to calculate statistic resolution matrix with ex-
amples for the inverse problem in Fig. 1 are available through:
http://www.seismolab.org/people/meijian/.
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