Antarctic Moho Compilation of AN-Moho

We collected crustal thickness and/or Moho depth data from previous seismic studies (not including surface wave studies), and made a compilation of ANtarctic Moho positions (AN-Moho), under the evaluation of the quality of Moho depths. Considering that the crustal thickness or Moho depth given in previous studies may be variably defined, we corrected all thickness data to the same crustal thickness definition. Therefore, slight differences are evident between the data of our AN-Moho as compared with previous compilations and also data presented in previous studies because of different definitions.

Moho depths in the compilation of AN-Moho for Antarctica is shown in Figure 1 (= Figure 4 in An et al. [2015a]). All the Moho depths and the previous studies that the Moho depths come from are listed in Table 1 (= Table S1 in An et al. [2015a]). It is noted that the Moho depth in Table 1 is from sea level to the Moho discontinuity, but crustal thickness is from the solid surface. More details of how this compilation was constructed can be found in a supplementary section to:

An Meijian, Douglas Wiens, Zhao Yue, Feng Mei, Andrew A. Nyblade, Masaki Kanao, Li Yuansheng, Alessia Maggi, Jean-Jacques Lévêque, 2015a, S-velocity Model and Inferred Moho Topography beneath the Antarctic Plate from Rayleigh Waves. J. Geophys. Res., 120(1),359–383, doi:10.1002/2014JB011332.

CORRECTION on May 19, 2021: Typos in longitudes of WRS* stations in Ross Sea, which are found by Dr. Renata Constantino. The correction can be found in a comparison on the Moho (circles) in Ross Sea in the below Figure 1 with those in Fig. 4 in An et al. [2015a]. Due to the Typos, Moho information from some WRS* stations in Ross Sea are not used in the construction of the initial reference model in An et al. [2015a].

Figure 1. Crustal thicknesses in the compilation of AN-Moho for Antarctica. Typos in longitude of WRS* stations in Ross Sea in Figure 4 in An et al. [2015a] were corrected in this figure. [download PDF]


Table 1. Crustal thicknesses in the compilation of AN-Moho [An et al., 2015a]
(Typos in longitude of WRS* stations in Ross Sea were corrected in this table)


Name Longitude (°) Latitude (°) Crustal thickness (km)
(from the soild surface)
Moho depths(km)
(from sea level)
Sources
9169 -6.02 -75 45.0 42.3 1
9172 -9.7 -73.6 44.0 42.6 1
96100B 5.9 -67.7 12.0 16.0 2
96100E 6.1 -69.7 23.0 25.0 2
96110B -14.1 -69 10.0 14.0 2
96110E -12.5 -73.5 21.0 23.0 2
A 67 -72 32.0 32.0 3 , 4
AMERY 73.85 -69.71 30.0 30.0 3 , 4
AN01 166.92 -77.19 20.0 19.8 5
AN05 163.96 -77.69 18.0 17.8 5
AN08 160.15 -77.54 40.0 37.9 5
AN09 162.17 -77.93 34.0 32.8 5
AN10 162.83 -77.63 32.0 31.3 5
AWI2-4 -13.09 -74.5 45.9 45.0 6
B 78.2 -68.77 34.0 34.0 3 , 4
BEAVER 68.34 -70.75 30.0 30.0 3 , 4
BT01 166.563 -71.112 25.0 23.3 7
BT05 158.928 -69.89 31.0 29.5 7
BT06 157.337 -69.514 32.0 31.4 7
BT07 155.03 -69.245 31.0 30.0 7
BVLK 68.17 -70.8 33.0 32.9 8
BYRD -119.473 -80.0168 26.75 25.2 9
BYRD -119.5466 -80 27.0 25.5 10
C 69.09 -71.55 24.0 24.0 3 , 4
CASE 160.1262 -80.4481 27.8 27.0 11
CASEY 110.31 -66.17 30.0 30.0 12
CBOB 163.1707 -77.0342 20.1 20.0 11
CBRI 166.4266 -77.2516 18.3 18.0 11
CCRZ 169.0947 -77.5166 19.8 19.0 11
CHNA 77.013 -78.677 46.8 43.3 13
CHNB 76.976 -77.1744 57.5 54.5 13
CLRK -141.8485 -77.3231 30 29.0 9
CPHI 162.6484 -75.0745 22.2 22.0 11
CRES 64.17 -72.66 33.0 31.6 8
CTEA 160.7643 -78.9439 21.3 20.0 11
D000 298.5 -74.86 37.0 37.0 14
D100 301 -75.45 35.0 35.0 14
D200 304 -76.06 33.0 33.0 14
D320 -52.5 -76.8 32.0 32.0 14
D420 -49 -77.2 30.0 30.0 14
D500 -47 -77.7 29.0 29.0 14
D640 -41 -77.8 32.0 32.0 14
D 72.38 -69.49 24.0 24.0 3 , 4
D780 -36 -77.8 41.0 41.0 14
DAVI 78 -68.7 39.0 38.9 8
DEVL 161.9745 -81.4757 18 17.9 9
DIHI 159.48 -79.8491 21.4 21.0 11
DNTW -107.7804 -76.4571 25.21 24.2 9
DOMEA 77.1047 -80.422 61.6 57.5 13
DRV 140 -66.8 28.0 27.6 15
DSS2 -59.5 -62.5 33.0 32.9 16
DSS6 -62.5 -64.7 35.0 34.4 16
DT154 77.0257 -74.5824 49.3 46.6 13
DUFK -53.2007 -82.8619 38.4 37.4 9
E000 163.6175 -77.6262 20.3 20.0 11
E002 163.0078 -77.575 24.7 24.0 11
E004 162.0661 -77.4133 30.7 30.0 11
E006 161.6256 -77.3703 34.6 34.0 11
E008 160.5033 -77.2817 37.8 36.0 11
E010 160.086 -77.1847 39.0 37.2 17 , 18
E012 159.326 -77.0461 40.6 38.7 18
E018 157.224 -76.8234 40.7 38.6 18
E020 156.547 -76.7295 45.2 43.0 18
E024 155.238 -76.5394 45.6 43.4 18
E028 154.039 -76.3075 45.6 43.3 18
E030 153.379 -76.2511 45.5 43.2 18
EAGLE 77.0448 -76.4154 58.4 55.6 13
ERS-11 -174.445 -77.12 17.5 18.0 19
ERS-13 -173.637 -77.1217 17.5 18.0 19
ERS-17 -172.027 -77.1217 18.5 19.0 19
ERS-20 -170.813 -77.1217 19.5 20.0 19
ERS-23 -169.61 -77.1217 21.5 22.0 19
ERS-3 -178.583 -77.12 23.4 24.0 19
ERS-5 -176.99 -77.1167 23.4 24.0 19
ESPZ 301.6 -63.7 37.0 36.4 20
FALL -143.6284 -85.3066 24 23.7 9
FISH 162.5652 -78.9276 17 16.7 9
FISHER 67.39 -71.52 39.0 38.4 8
GM01 104.7291 -83.9858 34.5 31.2 21
GM02 97.5815 -79.4251 42.3 38.6 21
GM03 85.9439 -80.2169 56.0 52.1 21
GM04 61.1124 -82.9997 51.5 47.7 21
GM05 51.1588 -81.1841 50.2 46.4 21
GROV 75 -72.9 40.0 38.0 8
HOWD -86.7694 -77.5285 37 35.5 9
ISDE -134.9935 -80 28.0 27.4 10
J01-SP1 41.2 -70.2 41.0 40.0 22
J01-SP2 41.5 -69.8 41.0 40.0 22
J01-SP5 42.4 -69.25 41.0 40.0 22
J01-SP6 42.7 -69.08 41.0 40.0 22
J01-SP7 42.95 -68.7 41.0 40.0 22
J99-S1 40.06 -69.04 38.0 37.0 23
J99-S2 40.65 -69.06 40.0 39.0 23
J99-S3 41.3 -69.3 41.0 40.0 23
J99-S4 42 -69.6 42.0 41.0 23
J99-S5 42.6 -69.8 43.5 42.0 23
J99-S6 43.4 -70.2 45.0 43.0 23
JNCT 157.901 -76.9313 38.0 35.8 18
LONW 152.735 -81.3466 45 43.5 9
LT892 77.767 -71.6708 45.7 43.5 13
M450 165.4 -77.75 21.0 21.0 24
MAGL 162.4083 -76.1381 23.0 23.0 11
MBL -130.2241 -78.093 25.0 23.4 10
MECK -72.1849 -75.2807 26.5 25.4 9
MILR 156.2517 -83.3063 45 43.1 9
MINN 166.88 -78.5504 20.5 20.0 11
MPAT -155.022 -78.0297 27.5 27.0 9
MTM -100.0123 -79.496 21.0 19.0 10
MUC6-8 -11.065 -75.25 53.1 51.0 6
MZH 44.3 -70.1 44.0 42.0 23 , 25
N000 160.378 -76.0088 32.8 31.1 18
N020 155.818 -77.4678 40.5 38.2 18
N036 151.278 -78.5508 44.0 41.7 18
N044 148.616 -79.0692 47.0 44.7 18
N060 142.595 -80.0001 47.9 45.5 18
N076 135.434 -80.8062 48.0 45.5 18
N092 126.98 -81.4593 46.6 43.8 18
N100 122.61 -81.6525 45.5 42.6 18
N108 117.605 -81.8795 47.0 43.9 18
N116 112.571 -82.0098 45.1 41.9 18
N124 107.6406 -82.0745 47.9 44.5 21
N132 101.9534 -82.0751 45.3 41.9 21
N140 96.7692 -82.0086 49.3 45.7 21
N156 86.5045 -81.6726 46.3 42.4 21
N165 81.7604 -81.4084 56.5 52.5 21
N173 77.4736 -81.1122 59.2 55.2 21
N182 73.1898 -80.7363 57.8 53.7 21
N190 69.431 -80.3275 51.5 47.6 21
N198 65.9607 -79.8597 53.4 49.6 21
N206 62.8556 -79.3947 50.3 46.6 21
N215 59.9943 -78.9045 47.9 44.4 21
NOVO 11.835 -70.776 42.0 41.8 6
OND -125.7358 -80.7456 28.0 26.9 10
P061 77.2238 -84.4996 46.1 42.6 21
P071 77.3347 -83.6465 43.0 39.4 21
P080 77.364 -82.8054 48.0 44.2 21
P116 77.0451 -79.5669 56.7 52.8 21
P124 77.657 -78.8718 58.9 55.3 21
PECA -68.5527 -85.6124 37 35.5 9
PMSA 296 -64.8 40.0 39.8 20
**PMSA -64 -64.8 36.0 36.0 15
REIN 72.55 -70.45 33.0 32.9 8
RIS51 -61 -74.7 33.0 33.0 26
RIS56 -55 -75.8 27.0 27.0 26
SAE33B -12.5 -71.5 32.0 32.0 6 , 27
SAE33E -7.2 -70.7 32.0 32.0 6 , 27
SAE34B -10.5 -71 33.0 33.0 6 , 27
SAE34E -4.8 -73.4 41.0 39.0 6 , 27 ; 1
SBA 166.7573 -77.8491 21.0 21.0 11
SBA 166.757 -77.8491 21.0 21.0 5
SDM -148.85 -81.6148 27.0 26.3 10
SILY -125.966 -77.1332 32.8 30.7 9
SIPL -148.9555 -81.6405 28.03 27.4 9
SNAA -2.838 -71.671 40.0 39.2 6
SPA 0 -90 34.0 31.2 10
ST01 -98.7419 -83.2279 30.24 28.2 9
ST02 -109.1243 -82.069 34.24 32.5 9
ST03 -113.1504 -81.4065 26.53 24.9 9
ST04 -116.5782 -80.715 23.76 22.2 9
ST06 -121.8196 -79.3316 24.8 23.3 9
ST07 -123.7953 -78.6387 26.21 24.6 9
ST08 -125.5313 -77.9576 26.8 25.0 9
ST09 -128.4734 -76.5309 31.74 29.5 9
ST10 -129.7489 -75.8143 29.83 28.1 9
ST12 -123.816 -76.897 24.02 21.8 9
ST13 -130.5139 -77.5609 32.18 30.3 9
ST14 -134.0802 -77.8378 28.93 27.3 9
STC -136.4061 -82.3575 31.0 30.5 10
SURP -171.2018 -84.7199 26.5 26.1 9
THUR -97.5606 -72.5301 24.1 23.9 9
TNV 164.12 -74.7 22.1 22.0 11
UPTW -109.0396 -77.5797 22.39 21.1 9
VNDA 161.8456 -77.5139 35.6 35.0 11
**VNDA 161.846 -77.5139 35.0 34.4 5 , 17
**VNDA 161.853 -77.5172 35.3 34.7 18
VOSTOK 106.48 -78.28 30.0 26.5 28
**VOSTOK 106.48 -78.28 35.0 31.5 29
WA-AM 131.5 -64 18.0 21.0 30
WA-AN 132 -63.2 12.0 16.3 30
WA-BM 141 -65.1 16.0 18.7 30
WA-BN 141 -64.1 7.0 10.6 30
WA-BS 141 -65.6 23.0 24.1 30
WAIS -111.7776 -79.4181 25.57 23.8 9
WEIGEL -9.622 -74.275 44.0 42.5 6
WHIT -104.3867 -82.6823 31.5 30.2 9
WILS -80.5587 -80.0396 30 29.3 9
WM72 11.524 -72.144 50.0 47.4 6
WM73 11.562 -71.437 45.0 43.6 6
WM79 13.215 -72.04 51.0 48.6 6
WNDY -119.4129 -82.3695 23.17 22.2 9
WRS-10 172.386 -77.0717 18.3 19.0 19
WRS-11 172.788 -77.0755 16.4 17.0 19
WRS-12 173.203 -77.0892 14.4 15.0 19
WRS-14 174.005 -77.1055 13.5 14.0 19
WRS-17 175.215 -77.1052 20.6 21.0 19
WRS-21 176.826 -77.1051 23.6 24.0 19
WRS-2 169.226 -77.0939 15.1 16.0 19
WRS-25 178.445 -77.1214 23.5 24.0 19
WRS-29 -179.937 -77.1218 23.3 24.0 19
WRS-3 169.618 -77.1018 16.1 17.0 19
WRS-4 169.986 -77.1021 16.2 17.0 19
WRS-6 170.773 -77.0716 18.2 19.0 19
WRS-7 171.18 -77.0539 19.2 20.0 19
WRS-8 171.58 -77.0551 20.3 21.0 19
WRS-9 171.988 -77.0641 20.3 21.0 19
ZHSH 76.3727 -69.3747 38.3 38.3 13

 

All data sources in Table 1 are:

1. Hoffmann, M., Eckstaller, A., Jokat, W. & Miller, H. in Workshop "East-West Antarctic Tectonics and Gondwana Breakup 60W to 60E" at ISAES IX meeting, September 8-12    (Potsdam, 2003).

2. Jokat, W., Ritzmann, O., Reichert, C. & Hinz, K. Deep Crustal Structure of the Continental Margin off the Explora Escarpment and in the Lazarev Sea, East Antarctica. Mar Geophys Res 25, 283-304, doi:10.1007/s11001-005-1337-9 (2004).

3. Kolmakov, A. F., Mishenkin, B. P. & Solovyev, D. S. Deep seismic studies in East Antarctica. Bulletin of Soviet Antarctic expedition , 5-15 (1975).

4. Baranov, A. & Morelli, A. The Moho depth map of the Antarctica region. Tectonophysics 609, 299-313, doi: http://dx.doi.org/10.1016/j.tecto.2012.12.023 (2013).

5. Bannister, S., Yu, J., Leitner, B. & Kennett, B. L. N. Variations in crustal structure across the transition from West to East Antarctica, Southern Victoria Land. Geophysical Journal International 155, 870-880, doi:10.1111/j.1365-246X.2003.02094.x (2003).

6. Bayer, B., Geissler, W. H., Eckstaller, A. & Jokat, W. Seismic imaging of the crust beneath Dronning Maud Land, East Antarctica. Geophysical Journal International 178, 860-876, doi:10.1111/j.1365-246X.2009.04196.x (2009).

7. Agostinetti, N. P., Amato, A., Cattaneo, M. & Di Bona, M. Crustal structure of northern Victoria Land from receiver function analysis. Terra Antarctica 11, 5-14 (2004).

8. Reading, A. M. The seismic structure of Precambrian and early Palaeozoic terranes in the Lambert Glacier region, East Antarctica. Earth and Planetary Science Letters 244, 44-57, doi: http://dx.doi.org/10.1016/j.epsl.2006.01.031 (2006).

9. Chaput, J. et al. The Crustal Thickness of West Antarctica. J. Geophys. Res., submitted (2014).

10. Winberry, J. P. & Anandakrishnan, S. Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology 32, 977-980, doi:10.1130/g20768.1 (2004).

11. Lawrence, J. F. et al. Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions, surface waves, and gravity: Implications for uplift models. Geochem. Geophys. Geosyst. 7, Q10011, doi:10.1029/2006gc001282 (2006).

12. Reading, A. M. The Seismic Structure of Wilkes Land/Terre Adelie, East Antarctica and Comparison with Australia: First Steps in Reconstructing the Deep Lithosphere of Gondwana. Gondwana Research 7, 21-30, doi: http://dx.doi.org/10.1016/S1342-937X(05)70303-8 (2004).

13. Feng, M. et al. Crustal Thicknesses along the Traverse from Zhongshan to Dome A in Eastern Antarctica. Chinese J. Polar Research 26, 177-185 (2014).

14. Leitchenkov, G. & Kudryavtzev, G. Structure and origin of the Earth's Crust in the Weddell Sea Embayment (beneath the Front of the Filehner and Ronne lee Shelves) from deep seismic sounding data. Polarforschung 67, 143-154 (1997).

15. Kanao, M. & Shibutani, T. in Seismic Waves - Research and Analysis    (ed Masaki Kanao)  237-252 (InTech, 2012).

16. Guterch, A., Grad, M., Janik, T., Perchuć, E. & Pajchel, J. Seismic studies of the crustal structure in West Antarctica 1979–1980—Preliminary results. Tectonophysics 114, 411-429, doi: http://dx.doi.org/10.1016/0040-1951(85)90024-1 (1985).

17. Finotello, M., Nyblade, A., Julia, J., Wiens, D. & Anandakrishnan, S. Crustal Vp–Vs ratios and thickness for Ross Island and the Transantarctic Mountain front, Antarctica. Geophysical Journal International 185, 85-92, doi:10.1111/j.1365-246X.2011.04946.x (2011).

18. Hansen, S. E. et al. Using S wave receiver functions to estimate crustal structure beneath ice sheets: An application to the Transantarctic Mountains and East Antarctic craton. Geochem. Geophys. Geosyst. 10, Q08014, doi:10.1029/2009gc002576 (2009).

19. Trey, H. et al. Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics 301, 61-74, doi: http://dx.doi.org/10.1016/S0040-1951(98)00155-3 (1999).

20. Vuan, A. Joint Inversion of Receiver Function of Teleseismic Body Waves and Local Group Velocity Dispersion Curves beneath ESPZ and PMSA Stations (Antarctic Peninsula). Terra Antarctica 8, 49-54 (2001).

21. Hansen, S. E. et al. Crustal structure of the Gamburtsev Mountains, East Antarctica, from S-wave receiver functions and Rayleigh wave phase velocities. Earth and Planetary Science Letters 300, 395-401, doi:10.1016/j.epsl.2010.10.022 (2010).

22. Miyamachi, H. et al. A refraction and wide-angle reflection seismic exploration in JARE-43 on the Mizuho Plateau, East Antarctica. Polar Geoscience 16, 1-21 (2003).

23. Yoshii, K., Ito, K., Miyamachi, H. & Kanao, M. Crustal structure derived from refractions and wide-angle reflections in the Mizuho Plateau, East Antarctica. Polar Geoscience 17, 112-138 (2004).

24. McGinnis, L. D., Bowen, R. H., Erickson, J. M., Allred, B. J. & Kreamer, J. L. East-West Antarctic boundary in McMurdo sound. Tectonophysics 114, 341-356, doi: http://dx.doi.org/10.1016/0040-1951(85)90020-4 (1985).

25. Ikami, A. & Ito, K. Crustal structure in the Mizuho Plateau, East Antarctica, by a two-dimensional ray approximation. Journal of Geodynamics 6, 271-283, doi: http://dx.doi.org/10.1016/0264-3707(86)90044-X (1986).

26. Jokat, W., Fechner, N. & Studinger, M. in The Antarctic Region: Geological Evolution and Processes   (ed C.A. Ricci) 453-459 (Terra Antartica Publication, 1997).

27. Kudryavtzev, G. A., Butzenko, V. V. & Kadmina, I. N. in Sixth international sysmposium on Antarctic earth sciences    330-335 (National Institute for Polar Research, 1991).

28. Studinger, M. et al. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth and Planetary Science Letters 216, 663-677 (2003).

29. Isanina, E. V., Krupnova, N. A., Popov, S. V., Masolov, V. N. & Lukin, V. V. Deep structure of the Vostok Basin, East Antarctica as deduced from seismological observations. Geotectonics 43, 221-225, doi:10.1134/s0016852109030042 (2009).

30. Eittreim, S. L. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica. Journal of Geophysical Research: Solid Earth 99, 24189-24205, doi:10.1029/94jb01903 (1994).